Metamath Proof Explorer


Theorem lcfrlem27

Description: Lemma for lcfr . Special case of lcfrlem37 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h
|- H = ( LHyp ` K )
lcfrlem17.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem17.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem17.v
|- V = ( Base ` U )
lcfrlem17.p
|- .+ = ( +g ` U )
lcfrlem17.z
|- .0. = ( 0g ` U )
lcfrlem17.n
|- N = ( LSpan ` U )
lcfrlem17.a
|- A = ( LSAtoms ` U )
lcfrlem17.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem17.x
|- ( ph -> X e. ( V \ { .0. } ) )
lcfrlem17.y
|- ( ph -> Y e. ( V \ { .0. } ) )
lcfrlem17.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
lcfrlem22.b
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
lcfrlem24.t
|- .x. = ( .s ` U )
lcfrlem24.s
|- S = ( Scalar ` U )
lcfrlem24.q
|- Q = ( 0g ` S )
lcfrlem24.r
|- R = ( Base ` S )
lcfrlem24.j
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
lcfrlem24.ib
|- ( ph -> I e. B )
lcfrlem24.l
|- L = ( LKer ` U )
lcfrlem25.d
|- D = ( LDual ` U )
lcfrlem25.jz
|- ( ph -> ( ( J ` Y ) ` I ) = Q )
lcfrlem25.in
|- ( ph -> I =/= .0. )
lcfrlem27.g
|- ( ph -> G e. ( LSubSp ` D ) )
lcfrlem27.gs
|- ( ph -> G C_ { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } )
lcfrlem27.e
|- E = U_ g e. G ( ._|_ ` ( L ` g ) )
lcfrlem27.xe
|- ( ph -> X e. E )
lcfrlem27.ye
|- ( ph -> Y e. E )
Assertion lcfrlem27
|- ( ph -> ( X .+ Y ) e. E )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h
 |-  H = ( LHyp ` K )
2 lcfrlem17.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem17.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem17.v
 |-  V = ( Base ` U )
5 lcfrlem17.p
 |-  .+ = ( +g ` U )
6 lcfrlem17.z
 |-  .0. = ( 0g ` U )
7 lcfrlem17.n
 |-  N = ( LSpan ` U )
8 lcfrlem17.a
 |-  A = ( LSAtoms ` U )
9 lcfrlem17.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcfrlem17.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
11 lcfrlem17.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
12 lcfrlem17.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
13 lcfrlem22.b
 |-  B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
14 lcfrlem24.t
 |-  .x. = ( .s ` U )
15 lcfrlem24.s
 |-  S = ( Scalar ` U )
16 lcfrlem24.q
 |-  Q = ( 0g ` S )
17 lcfrlem24.r
 |-  R = ( Base ` S )
18 lcfrlem24.j
 |-  J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
19 lcfrlem24.ib
 |-  ( ph -> I e. B )
20 lcfrlem24.l
 |-  L = ( LKer ` U )
21 lcfrlem25.d
 |-  D = ( LDual ` U )
22 lcfrlem25.jz
 |-  ( ph -> ( ( J ` Y ) ` I ) = Q )
23 lcfrlem25.in
 |-  ( ph -> I =/= .0. )
24 lcfrlem27.g
 |-  ( ph -> G e. ( LSubSp ` D ) )
25 lcfrlem27.gs
 |-  ( ph -> G C_ { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } )
26 lcfrlem27.e
 |-  E = U_ g e. G ( ._|_ ` ( L ` g ) )
27 lcfrlem27.xe
 |-  ( ph -> X e. E )
28 lcfrlem27.ye
 |-  ( ph -> Y e. E )
29 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
30 eqid
 |-  ( 0g ` D ) = ( 0g ` D )
31 eqid
 |-  { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
32 eqid
 |-  ( LSubSp ` D ) = ( LSubSp ` D )
33 eldifsni
 |-  ( Y e. ( V \ { .0. } ) -> Y =/= .0. )
34 11 33 syl
 |-  ( ph -> Y =/= .0. )
35 eldifsn
 |-  ( Y e. ( E \ { .0. } ) <-> ( Y e. E /\ Y =/= .0. ) )
36 28 34 35 sylanbrc
 |-  ( ph -> Y e. ( E \ { .0. } ) )
37 1 2 3 4 5 14 15 17 6 29 20 21 30 31 18 9 32 24 25 26 36 lcfrlem16
 |-  ( ph -> ( J ` Y ) e. G )
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem26
 |-  ( ph -> ( X .+ Y ) e. ( ._|_ ` ( L ` ( J ` Y ) ) ) )
39 2fveq3
 |-  ( g = ( J ` Y ) -> ( ._|_ ` ( L ` g ) ) = ( ._|_ ` ( L ` ( J ` Y ) ) ) )
40 39 eleq2d
 |-  ( g = ( J ` Y ) -> ( ( X .+ Y ) e. ( ._|_ ` ( L ` g ) ) <-> ( X .+ Y ) e. ( ._|_ ` ( L ` ( J ` Y ) ) ) ) )
41 40 rspcev
 |-  ( ( ( J ` Y ) e. G /\ ( X .+ Y ) e. ( ._|_ ` ( L ` ( J ` Y ) ) ) ) -> E. g e. G ( X .+ Y ) e. ( ._|_ ` ( L ` g ) ) )
42 37 38 41 syl2anc
 |-  ( ph -> E. g e. G ( X .+ Y ) e. ( ._|_ ` ( L ` g ) ) )
43 eliun
 |-  ( ( X .+ Y ) e. U_ g e. G ( ._|_ ` ( L ` g ) ) <-> E. g e. G ( X .+ Y ) e. ( ._|_ ` ( L ` g ) ) )
44 42 43 sylibr
 |-  ( ph -> ( X .+ Y ) e. U_ g e. G ( ._|_ ` ( L ` g ) ) )
45 44 26 eleqtrrdi
 |-  ( ph -> ( X .+ Y ) e. E )