Metamath Proof Explorer


Theorem lcfrlem41

Description: Lemma for lcfr . Eliminate span condition. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem38.h
|- H = ( LHyp ` K )
lcfrlem38.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem38.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem38.p
|- .+ = ( +g ` U )
lcfrlem38.f
|- F = ( LFnl ` U )
lcfrlem38.l
|- L = ( LKer ` U )
lcfrlem38.d
|- D = ( LDual ` U )
lcfrlem38.q
|- Q = ( LSubSp ` D )
lcfrlem38.c
|- C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lcfrlem38.e
|- E = U_ g e. G ( ._|_ ` ( L ` g ) )
lcfrlem38.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem38.g
|- ( ph -> G e. Q )
lcfrlem38.gs
|- ( ph -> G C_ C )
lcfrlem38.xe
|- ( ph -> X e. E )
lcfrlem38.ye
|- ( ph -> Y e. E )
lcfrlem38.z
|- .0. = ( 0g ` U )
lcfrlem38.x
|- ( ph -> X =/= .0. )
lcfrlem38.y
|- ( ph -> Y =/= .0. )
Assertion lcfrlem41
|- ( ph -> ( X .+ Y ) e. E )

Proof

Step Hyp Ref Expression
1 lcfrlem38.h
 |-  H = ( LHyp ` K )
2 lcfrlem38.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem38.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem38.p
 |-  .+ = ( +g ` U )
5 lcfrlem38.f
 |-  F = ( LFnl ` U )
6 lcfrlem38.l
 |-  L = ( LKer ` U )
7 lcfrlem38.d
 |-  D = ( LDual ` U )
8 lcfrlem38.q
 |-  Q = ( LSubSp ` D )
9 lcfrlem38.c
 |-  C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
10 lcfrlem38.e
 |-  E = U_ g e. G ( ._|_ ` ( L ` g ) )
11 lcfrlem38.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
12 lcfrlem38.g
 |-  ( ph -> G e. Q )
13 lcfrlem38.gs
 |-  ( ph -> G C_ C )
14 lcfrlem38.xe
 |-  ( ph -> X e. E )
15 lcfrlem38.ye
 |-  ( ph -> Y e. E )
16 lcfrlem38.z
 |-  .0. = ( 0g ` U )
17 lcfrlem38.x
 |-  ( ph -> X =/= .0. )
18 lcfrlem38.y
 |-  ( ph -> Y =/= .0. )
19 eqid
 |-  ( LSpan ` U ) = ( LSpan ` U )
20 11 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> ( K e. HL /\ W e. H ) )
21 12 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> G e. Q )
22 14 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> X e. E )
23 15 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> Y e. E )
24 simpr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) )
25 1 2 3 4 19 6 7 8 20 21 10 22 23 24 lcfrlem6
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> ( X .+ Y ) e. E )
26 11 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> ( K e. HL /\ W e. H ) )
27 12 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> G e. Q )
28 13 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> G C_ C )
29 14 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> X e. E )
30 15 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> Y e. E )
31 17 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> X =/= .0. )
32 18 adantr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> Y =/= .0. )
33 simpr
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) )
34 1 2 3 4 5 6 7 8 9 10 26 27 28 29 30 16 31 32 19 33 lcfrlem40
 |-  ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> ( X .+ Y ) e. E )
35 25 34 pm2.61dane
 |-  ( ph -> ( X .+ Y ) e. E )