Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem38.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem38.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem38.p |
|- .+ = ( +g ` U ) |
5 |
|
lcfrlem38.f |
|- F = ( LFnl ` U ) |
6 |
|
lcfrlem38.l |
|- L = ( LKer ` U ) |
7 |
|
lcfrlem38.d |
|- D = ( LDual ` U ) |
8 |
|
lcfrlem38.q |
|- Q = ( LSubSp ` D ) |
9 |
|
lcfrlem38.c |
|- C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
10 |
|
lcfrlem38.e |
|- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
11 |
|
lcfrlem38.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
lcfrlem38.g |
|- ( ph -> G e. Q ) |
13 |
|
lcfrlem38.gs |
|- ( ph -> G C_ C ) |
14 |
|
lcfrlem38.xe |
|- ( ph -> X e. E ) |
15 |
|
lcfrlem38.ye |
|- ( ph -> Y e. E ) |
16 |
|
lcfrlem38.z |
|- .0. = ( 0g ` U ) |
17 |
|
lcfrlem38.x |
|- ( ph -> X =/= .0. ) |
18 |
|
lcfrlem38.y |
|- ( ph -> Y =/= .0. ) |
19 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
20 |
11
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
12
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> G e. Q ) |
22 |
14
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> X e. E ) |
23 |
15
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> Y e. E ) |
24 |
|
simpr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) |
25 |
1 2 3 4 19 6 7 8 20 21 10 22 23 24
|
lcfrlem6 |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) = ( ( LSpan ` U ) ` { Y } ) ) -> ( X .+ Y ) e. E ) |
26 |
11
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> ( K e. HL /\ W e. H ) ) |
27 |
12
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> G e. Q ) |
28 |
13
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> G C_ C ) |
29 |
14
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> X e. E ) |
30 |
15
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> Y e. E ) |
31 |
17
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> X =/= .0. ) |
32 |
18
|
adantr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> Y =/= .0. ) |
33 |
|
simpr |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 26 27 28 29 30 16 31 32 19 33
|
lcfrlem40 |
|- ( ( ph /\ ( ( LSpan ` U ) ` { X } ) =/= ( ( LSpan ` U ) ` { Y } ) ) -> ( X .+ Y ) e. E ) |
35 |
25 34
|
pm2.61dane |
|- ( ph -> ( X .+ Y ) e. E ) |