Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem38.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem38.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem38.p |
|- .+ = ( +g ` U ) |
5 |
|
lcfrlem38.f |
|- F = ( LFnl ` U ) |
6 |
|
lcfrlem38.l |
|- L = ( LKer ` U ) |
7 |
|
lcfrlem38.d |
|- D = ( LDual ` U ) |
8 |
|
lcfrlem38.q |
|- Q = ( LSubSp ` D ) |
9 |
|
lcfrlem38.c |
|- C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
10 |
|
lcfrlem38.e |
|- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
11 |
|
lcfrlem38.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
lcfrlem38.g |
|- ( ph -> G e. Q ) |
13 |
|
lcfrlem38.gs |
|- ( ph -> G C_ C ) |
14 |
|
lcfrlem38.xe |
|- ( ph -> X e. E ) |
15 |
|
lcfrlem38.ye |
|- ( ph -> Y e. E ) |
16 |
1 3 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
17 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
18 |
1 2 3 17 6 7 8 10 11 12 14
|
lcfrlem4 |
|- ( ph -> X e. ( Base ` U ) ) |
19 |
1 2 3 17 6 7 8 10 11 12 15
|
lcfrlem4 |
|- ( ph -> Y e. ( Base ` U ) ) |
20 |
17 4
|
lmodcom |
|- ( ( U e. LMod /\ X e. ( Base ` U ) /\ Y e. ( Base ` U ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |
21 |
16 18 19 20
|
syl3anc |
|- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |
23 |
11
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
24 |
12
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> G e. Q ) |
25 |
15
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> Y e. E ) |
26 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
27 |
|
simpr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> X = ( 0g ` U ) ) |
28 |
1 2 3 4 6 7 8 23 24 10 25 26 27
|
lcfrlem7 |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( Y .+ X ) e. E ) |
29 |
22 28
|
eqeltrd |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( X .+ Y ) e. E ) |
30 |
11
|
adantr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
31 |
12
|
adantr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> G e. Q ) |
32 |
14
|
adantr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> X e. E ) |
33 |
|
simpr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> Y = ( 0g ` U ) ) |
34 |
1 2 3 4 6 7 8 30 31 10 32 26 33
|
lcfrlem7 |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( X .+ Y ) e. E ) |
35 |
11
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> ( K e. HL /\ W e. H ) ) |
36 |
12
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> G e. Q ) |
37 |
13
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> G C_ C ) |
38 |
14
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> X e. E ) |
39 |
15
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> Y e. E ) |
40 |
|
simprl |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> X =/= ( 0g ` U ) ) |
41 |
|
simprr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> Y =/= ( 0g ` U ) ) |
42 |
1 2 3 4 5 6 7 8 9 10 35 36 37 38 39 26 40 41
|
lcfrlem41 |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> ( X .+ Y ) e. E ) |
43 |
29 34 42
|
pm2.61da2ne |
|- ( ph -> ( X .+ Y ) e. E ) |