Metamath Proof Explorer


Theorem lcfrlem42

Description: Lemma for lcfr . Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem38.h
|- H = ( LHyp ` K )
lcfrlem38.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem38.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem38.p
|- .+ = ( +g ` U )
lcfrlem38.f
|- F = ( LFnl ` U )
lcfrlem38.l
|- L = ( LKer ` U )
lcfrlem38.d
|- D = ( LDual ` U )
lcfrlem38.q
|- Q = ( LSubSp ` D )
lcfrlem38.c
|- C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lcfrlem38.e
|- E = U_ g e. G ( ._|_ ` ( L ` g ) )
lcfrlem38.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem38.g
|- ( ph -> G e. Q )
lcfrlem38.gs
|- ( ph -> G C_ C )
lcfrlem38.xe
|- ( ph -> X e. E )
lcfrlem38.ye
|- ( ph -> Y e. E )
Assertion lcfrlem42
|- ( ph -> ( X .+ Y ) e. E )

Proof

Step Hyp Ref Expression
1 lcfrlem38.h
 |-  H = ( LHyp ` K )
2 lcfrlem38.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem38.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem38.p
 |-  .+ = ( +g ` U )
5 lcfrlem38.f
 |-  F = ( LFnl ` U )
6 lcfrlem38.l
 |-  L = ( LKer ` U )
7 lcfrlem38.d
 |-  D = ( LDual ` U )
8 lcfrlem38.q
 |-  Q = ( LSubSp ` D )
9 lcfrlem38.c
 |-  C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
10 lcfrlem38.e
 |-  E = U_ g e. G ( ._|_ ` ( L ` g ) )
11 lcfrlem38.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
12 lcfrlem38.g
 |-  ( ph -> G e. Q )
13 lcfrlem38.gs
 |-  ( ph -> G C_ C )
14 lcfrlem38.xe
 |-  ( ph -> X e. E )
15 lcfrlem38.ye
 |-  ( ph -> Y e. E )
16 1 3 11 dvhlmod
 |-  ( ph -> U e. LMod )
17 eqid
 |-  ( Base ` U ) = ( Base ` U )
18 1 2 3 17 6 7 8 10 11 12 14 lcfrlem4
 |-  ( ph -> X e. ( Base ` U ) )
19 1 2 3 17 6 7 8 10 11 12 15 lcfrlem4
 |-  ( ph -> Y e. ( Base ` U ) )
20 17 4 lmodcom
 |-  ( ( U e. LMod /\ X e. ( Base ` U ) /\ Y e. ( Base ` U ) ) -> ( X .+ Y ) = ( Y .+ X ) )
21 16 18 19 20 syl3anc
 |-  ( ph -> ( X .+ Y ) = ( Y .+ X ) )
22 21 adantr
 |-  ( ( ph /\ X = ( 0g ` U ) ) -> ( X .+ Y ) = ( Y .+ X ) )
23 11 adantr
 |-  ( ( ph /\ X = ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) )
24 12 adantr
 |-  ( ( ph /\ X = ( 0g ` U ) ) -> G e. Q )
25 15 adantr
 |-  ( ( ph /\ X = ( 0g ` U ) ) -> Y e. E )
26 eqid
 |-  ( 0g ` U ) = ( 0g ` U )
27 simpr
 |-  ( ( ph /\ X = ( 0g ` U ) ) -> X = ( 0g ` U ) )
28 1 2 3 4 6 7 8 23 24 10 25 26 27 lcfrlem7
 |-  ( ( ph /\ X = ( 0g ` U ) ) -> ( Y .+ X ) e. E )
29 22 28 eqeltrd
 |-  ( ( ph /\ X = ( 0g ` U ) ) -> ( X .+ Y ) e. E )
30 11 adantr
 |-  ( ( ph /\ Y = ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) )
31 12 adantr
 |-  ( ( ph /\ Y = ( 0g ` U ) ) -> G e. Q )
32 14 adantr
 |-  ( ( ph /\ Y = ( 0g ` U ) ) -> X e. E )
33 simpr
 |-  ( ( ph /\ Y = ( 0g ` U ) ) -> Y = ( 0g ` U ) )
34 1 2 3 4 6 7 8 30 31 10 32 26 33 lcfrlem7
 |-  ( ( ph /\ Y = ( 0g ` U ) ) -> ( X .+ Y ) e. E )
35 11 adantr
 |-  ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> ( K e. HL /\ W e. H ) )
36 12 adantr
 |-  ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> G e. Q )
37 13 adantr
 |-  ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> G C_ C )
38 14 adantr
 |-  ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> X e. E )
39 15 adantr
 |-  ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> Y e. E )
40 simprl
 |-  ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> X =/= ( 0g ` U ) )
41 simprr
 |-  ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> Y =/= ( 0g ` U ) )
42 1 2 3 4 5 6 7 8 9 10 35 36 37 38 39 26 40 41 lcfrlem41
 |-  ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> ( X .+ Y ) e. E )
43 29 34 42 pm2.61da2ne
 |-  ( ph -> ( X .+ Y ) e. E )