Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
|
2 |
|
lcfrlem38.o |
|
3 |
|
lcfrlem38.u |
|
4 |
|
lcfrlem38.p |
|
5 |
|
lcfrlem38.f |
|
6 |
|
lcfrlem38.l |
|
7 |
|
lcfrlem38.d |
|
8 |
|
lcfrlem38.q |
|
9 |
|
lcfrlem38.c |
|
10 |
|
lcfrlem38.e |
|
11 |
|
lcfrlem38.k |
|
12 |
|
lcfrlem38.g |
|
13 |
|
lcfrlem38.gs |
|
14 |
|
lcfrlem38.xe |
|
15 |
|
lcfrlem38.ye |
|
16 |
|
lcfrlem38.z |
|
17 |
|
lcfrlem38.x |
|
18 |
|
lcfrlem38.y |
|
19 |
|
eqid |
|
20 |
11
|
adantr |
|
21 |
12
|
adantr |
|
22 |
14
|
adantr |
|
23 |
15
|
adantr |
|
24 |
|
simpr |
|
25 |
1 2 3 4 19 6 7 8 20 21 10 22 23 24
|
lcfrlem6 |
|
26 |
11
|
adantr |
|
27 |
12
|
adantr |
|
28 |
13
|
adantr |
|
29 |
14
|
adantr |
|
30 |
15
|
adantr |
|
31 |
17
|
adantr |
|
32 |
18
|
adantr |
|
33 |
|
simpr |
|
34 |
1 2 3 4 5 6 7 8 9 10 26 27 28 29 30 16 31 32 19 33
|
lcfrlem40 |
|
35 |
25 34
|
pm2.61dane |
|