Metamath Proof Explorer


Theorem mapdrval

Description: Given a dual subspace R (of functionals with closed kernels), reconstruct the subspace Q that maps to it. (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapdrval.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdrval.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
mapdrval.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdrval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdrval.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapdrval.f 𝐹 = ( LFnl ‘ 𝑈 )
mapdrval.l 𝐿 = ( LKer ‘ 𝑈 )
mapdrval.d 𝐷 = ( LDual ‘ 𝑈 )
mapdrval.t 𝑇 = ( LSubSp ‘ 𝐷 )
mapdrval.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
mapdrval.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdrval.r ( 𝜑𝑅𝑇 )
mapdrval.e ( 𝜑𝑅𝐶 )
mapdrval.q 𝑄 = 𝑅 ( 𝑂 ‘ ( 𝐿 ) )
Assertion mapdrval ( 𝜑 → ( 𝑀𝑄 ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 mapdrval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdrval.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdrval.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
4 mapdrval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 mapdrval.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 mapdrval.f 𝐹 = ( LFnl ‘ 𝑈 )
7 mapdrval.l 𝐿 = ( LKer ‘ 𝑈 )
8 mapdrval.d 𝐷 = ( LDual ‘ 𝑈 )
9 mapdrval.t 𝑇 = ( LSubSp ‘ 𝐷 )
10 mapdrval.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
11 mapdrval.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 mapdrval.r ( 𝜑𝑅𝑇 )
13 mapdrval.e ( 𝜑𝑅𝐶 )
14 mapdrval.q 𝑄 = 𝑅 ( 𝑂 ‘ ( 𝐿 ) )
15 1 2 4 5 6 7 8 9 10 14 11 12 13 lcfr ( 𝜑𝑄𝑆 )
16 1 4 5 6 7 2 3 11 15 10 mapdvalc ( 𝜑 → ( 𝑀𝑄 ) = { 𝑓𝐶 ∣ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑄 } )
17 2fveq3 ( = 𝑖 → ( 𝑂 ‘ ( 𝐿 ) ) = ( 𝑂 ‘ ( 𝐿𝑖 ) ) )
18 17 cbviunv 𝑅 ( 𝑂 ‘ ( 𝐿 ) ) = 𝑖𝑅 ( 𝑂 ‘ ( 𝐿𝑖 ) )
19 14 18 eqtri 𝑄 = 𝑖𝑅 ( 𝑂 ‘ ( 𝐿𝑖 ) )
20 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
21 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
22 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
23 eqid ( 0g𝑈 ) = ( 0g𝑈 )
24 eqid ( 0g𝐷 ) = ( 0g𝐷 )
25 1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 23 24 mapdrvallem3 ( 𝜑 → { 𝑓𝐶 ∣ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑄 } = 𝑅 )
26 16 25 eqtrd ( 𝜑 → ( 𝑀𝑄 ) = 𝑅 )