| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdrval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdrval.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdrval.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdrval.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | mapdrval.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 6 |  | mapdrval.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 7 |  | mapdrval.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 8 |  | mapdrval.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 9 |  | mapdrval.t | ⊢ 𝑇  =  ( LSubSp ‘ 𝐷 ) | 
						
							| 10 |  | mapdrval.c | ⊢ 𝐶  =  { 𝑔  ∈  𝐹  ∣  ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) } | 
						
							| 11 |  | mapdrval.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | mapdrval.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑇 ) | 
						
							| 13 |  | mapdrval.e | ⊢ ( 𝜑  →  𝑅  ⊆  𝐶 ) | 
						
							| 14 |  | mapdrval.q | ⊢ 𝑄  =  ∪  ℎ  ∈  𝑅 ( 𝑂 ‘ ( 𝐿 ‘ ℎ ) ) | 
						
							| 15 | 1 2 4 5 6 7 8 9 10 14 11 12 13 | lcfr | ⊢ ( 𝜑  →  𝑄  ∈  𝑆 ) | 
						
							| 16 | 1 4 5 6 7 2 3 11 15 10 | mapdvalc | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑄 )  =  { 𝑓  ∈  𝐶  ∣  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑄 } ) | 
						
							| 17 |  | 2fveq3 | ⊢ ( ℎ  =  𝑖  →  ( 𝑂 ‘ ( 𝐿 ‘ ℎ ) )  =  ( 𝑂 ‘ ( 𝐿 ‘ 𝑖 ) ) ) | 
						
							| 18 | 17 | cbviunv | ⊢ ∪  ℎ  ∈  𝑅 ( 𝑂 ‘ ( 𝐿 ‘ ℎ ) )  =  ∪  𝑖  ∈  𝑅 ( 𝑂 ‘ ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 19 | 14 18 | eqtri | ⊢ 𝑄  =  ∪  𝑖  ∈  𝑅 ( 𝑂 ‘ ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 21 |  | eqid | ⊢ ( LSAtoms ‘ 𝑈 )  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 22 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 24 |  | eqid | ⊢ ( 0g ‘ 𝐷 )  =  ( 0g ‘ 𝐷 ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 23 24 | mapdrvallem3 | ⊢ ( 𝜑  →  { 𝑓  ∈  𝐶  ∣  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑄 }  =  𝑅 ) | 
						
							| 26 | 16 25 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑄 )  =  𝑅 ) |