Metamath Proof Explorer


Theorem mapd1o

Description: The map defined by df-mapd is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows M satisfies part of the definition of projectivity of Baer p. 40. TODO: change theorems leading to this ( lcfr , mapdrval , lclkrs , lclkr ,...) to use T i^i ~P C ? TODO: maybe get rid of $d's for g versus K U W ; propagate to mapdrn and any others. (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapd1o.h 𝐻 = ( LHyp ‘ 𝐾 )
mapd1o.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
mapd1o.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapd1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapd1o.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapd1o.f 𝐹 = ( LFnl ‘ 𝑈 )
mapd1o.l 𝐿 = ( LKer ‘ 𝑈 )
mapd1o.d 𝐷 = ( LDual ‘ 𝑈 )
mapd1o.t 𝑇 = ( LSubSp ‘ 𝐷 )
mapd1o.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
mapd1o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion mapd1o ( 𝜑𝑀 : 𝑆1-1-onto→ ( 𝑇 ∩ 𝒫 𝐶 ) )

Proof

Step Hyp Ref Expression
1 mapd1o.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapd1o.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 mapd1o.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
4 mapd1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 mapd1o.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 mapd1o.f 𝐹 = ( LFnl ‘ 𝑈 )
7 mapd1o.l 𝐿 = ( LKer ‘ 𝑈 )
8 mapd1o.d 𝐷 = ( LDual ‘ 𝑈 )
9 mapd1o.t 𝑇 = ( LSubSp ‘ 𝐷 )
10 mapd1o.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
11 mapd1o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 6 fvexi 𝐹 ∈ V
13 12 rabex { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑡 ) } ∈ V
14 eqid ( 𝑡𝑆 ↦ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑡 ) } ) = ( 𝑡𝑆 ↦ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑡 ) } )
15 13 14 fnmpti ( 𝑡𝑆 ↦ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑡 ) } ) Fn 𝑆
16 1 4 5 6 7 2 3 mapdfval ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑀 = ( 𝑡𝑆 ↦ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑡 ) } ) )
17 11 16 syl ( 𝜑𝑀 = ( 𝑡𝑆 ↦ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑡 ) } ) )
18 17 fneq1d ( 𝜑 → ( 𝑀 Fn 𝑆 ↔ ( 𝑡𝑆 ↦ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑡 ) } ) Fn 𝑆 ) )
19 15 18 mpbiri ( 𝜑𝑀 Fn 𝑆 )
20 12 rabex { 𝑔𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ⊆ 𝑡 ) } ∈ V
21 eqid ( 𝑡𝑆 ↦ { 𝑔𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ⊆ 𝑡 ) } ) = ( 𝑡𝑆 ↦ { 𝑔𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ⊆ 𝑡 ) } )
22 20 21 fnmpti ( 𝑡𝑆 ↦ { 𝑔𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ⊆ 𝑡 ) } ) Fn 𝑆
23 1 4 5 6 7 2 3 mapdfval ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑀 = ( 𝑡𝑆 ↦ { 𝑔𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ⊆ 𝑡 ) } ) )
24 11 23 syl ( 𝜑𝑀 = ( 𝑡𝑆 ↦ { 𝑔𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ⊆ 𝑡 ) } ) )
25 24 fneq1d ( 𝜑 → ( 𝑀 Fn 𝑆 ↔ ( 𝑡𝑆 ↦ { 𝑔𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ⊆ 𝑡 ) } ) Fn 𝑆 ) )
26 22 25 mpbiri ( 𝜑𝑀 Fn 𝑆 )
27 fvelrnb ( 𝑀 Fn 𝑆 → ( 𝑡 ∈ ran 𝑀 ↔ ∃ 𝑐𝑆 ( 𝑀𝑐 ) = 𝑡 ) )
28 26 27 syl ( 𝜑 → ( 𝑡 ∈ ran 𝑀 ↔ ∃ 𝑐𝑆 ( 𝑀𝑐 ) = 𝑡 ) )
29 11 adantr ( ( 𝜑𝑐𝑆 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
30 simpr ( ( 𝜑𝑐𝑆 ) → 𝑐𝑆 )
31 1 4 5 6 7 2 3 29 30 mapdval ( ( 𝜑𝑐𝑆 ) → ( 𝑀𝑐 ) = { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } )
32 eqid { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } = { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) }
33 1 2 4 5 6 7 8 9 10 32 29 30 lclkrs2 ( ( 𝜑𝑐𝑆 ) → ( { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ⊆ 𝐶 ) )
34 elin ( { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ↔ ( { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝒫 𝐶 ) )
35 12 rabex { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ V
36 35 elpw ( { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝒫 𝐶 ↔ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ⊆ 𝐶 )
37 36 anbi2i ( ( { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝒫 𝐶 ) ↔ ( { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ⊆ 𝐶 ) )
38 34 37 bitr2i ( ( { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ⊆ 𝐶 ) ↔ { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ ( 𝑇 ∩ 𝒫 𝐶 ) )
39 33 38 sylib ( ( 𝜑𝑐𝑆 ) → { 𝑓𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ⊆ 𝑐 ) } ∈ ( 𝑇 ∩ 𝒫 𝐶 ) )
40 31 39 eqeltrd ( ( 𝜑𝑐𝑆 ) → ( 𝑀𝑐 ) ∈ ( 𝑇 ∩ 𝒫 𝐶 ) )
41 eleq1 ( ( 𝑀𝑐 ) = 𝑡 → ( ( 𝑀𝑐 ) ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ↔ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) )
42 40 41 syl5ibcom ( ( 𝜑𝑐𝑆 ) → ( ( 𝑀𝑐 ) = 𝑡𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) )
43 42 rexlimdva ( 𝜑 → ( ∃ 𝑐𝑆 ( 𝑀𝑐 ) = 𝑡𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) )
44 eqid 𝑓𝑡 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = 𝑓𝑡 ( 𝑂 ‘ ( 𝐿𝑓 ) )
45 11 adantr ( ( 𝜑𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
46 inss1 ( 𝑇 ∩ 𝒫 𝐶 ) ⊆ 𝑇
47 46 sseli ( 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) → 𝑡𝑇 )
48 47 adantl ( ( 𝜑𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → 𝑡𝑇 )
49 inss2 ( 𝑇 ∩ 𝒫 𝐶 ) ⊆ 𝒫 𝐶
50 49 sseli ( 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) → 𝑡 ∈ 𝒫 𝐶 )
51 50 elpwid ( 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) → 𝑡𝐶 )
52 51 adantl ( ( 𝜑𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → 𝑡𝐶 )
53 1 2 4 5 6 7 8 9 10 44 45 48 52 lcfr ( ( 𝜑𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → 𝑓𝑡 ( 𝑂 ‘ ( 𝐿𝑓 ) ) ∈ 𝑆 )
54 1 2 3 4 5 6 7 8 9 10 45 48 52 44 mapdrval ( ( 𝜑𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → ( 𝑀 𝑓𝑡 ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = 𝑡 )
55 fveqeq2 ( 𝑐 = 𝑓𝑡 ( 𝑂 ‘ ( 𝐿𝑓 ) ) → ( ( 𝑀𝑐 ) = 𝑡 ↔ ( 𝑀 𝑓𝑡 ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = 𝑡 ) )
56 55 rspcev ( ( 𝑓𝑡 ( 𝑂 ‘ ( 𝐿𝑓 ) ) ∈ 𝑆 ∧ ( 𝑀 𝑓𝑡 ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = 𝑡 ) → ∃ 𝑐𝑆 ( 𝑀𝑐 ) = 𝑡 )
57 53 54 56 syl2anc ( ( 𝜑𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → ∃ 𝑐𝑆 ( 𝑀𝑐 ) = 𝑡 )
58 57 ex ( 𝜑 → ( 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) → ∃ 𝑐𝑆 ( 𝑀𝑐 ) = 𝑡 ) )
59 43 58 impbid ( 𝜑 → ( ∃ 𝑐𝑆 ( 𝑀𝑐 ) = 𝑡𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) )
60 28 59 bitrd ( 𝜑 → ( 𝑡 ∈ ran 𝑀𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) )
61 60 eqrdv ( 𝜑 → ran 𝑀 = ( 𝑇 ∩ 𝒫 𝐶 ) )
62 11 adantr ( ( 𝜑 ∧ ( 𝑡𝑆𝑢𝑆 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
63 simprl ( ( 𝜑 ∧ ( 𝑡𝑆𝑢𝑆 ) ) → 𝑡𝑆 )
64 simprr ( ( 𝜑 ∧ ( 𝑡𝑆𝑢𝑆 ) ) → 𝑢𝑆 )
65 1 4 5 3 62 63 64 mapd11 ( ( 𝜑 ∧ ( 𝑡𝑆𝑢𝑆 ) ) → ( ( 𝑀𝑡 ) = ( 𝑀𝑢 ) ↔ 𝑡 = 𝑢 ) )
66 65 biimpd ( ( 𝜑 ∧ ( 𝑡𝑆𝑢𝑆 ) ) → ( ( 𝑀𝑡 ) = ( 𝑀𝑢 ) → 𝑡 = 𝑢 ) )
67 66 ralrimivva ( 𝜑 → ∀ 𝑡𝑆𝑢𝑆 ( ( 𝑀𝑡 ) = ( 𝑀𝑢 ) → 𝑡 = 𝑢 ) )
68 dff1o6 ( 𝑀 : 𝑆1-1-onto→ ( 𝑇 ∩ 𝒫 𝐶 ) ↔ ( 𝑀 Fn 𝑆 ∧ ran 𝑀 = ( 𝑇 ∩ 𝒫 𝐶 ) ∧ ∀ 𝑡𝑆𝑢𝑆 ( ( 𝑀𝑡 ) = ( 𝑀𝑢 ) → 𝑡 = 𝑢 ) ) )
69 19 61 67 68 syl3anbrc ( 𝜑𝑀 : 𝑆1-1-onto→ ( 𝑇 ∩ 𝒫 𝐶 ) )