| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapd1o.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapd1o.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapd1o.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapd1o.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | mapd1o.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 6 |  | mapd1o.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 7 |  | mapd1o.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 8 |  | mapd1o.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 9 |  | mapd1o.t | ⊢ 𝑇  =  ( LSubSp ‘ 𝐷 ) | 
						
							| 10 |  | mapd1o.c | ⊢ 𝐶  =  { 𝑔  ∈  𝐹  ∣  ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) } | 
						
							| 11 |  | mapd1o.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 | 6 | fvexi | ⊢ 𝐹  ∈  V | 
						
							| 13 | 12 | rabex | ⊢ { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑡 ) }  ∈  V | 
						
							| 14 |  | eqid | ⊢ ( 𝑡  ∈  𝑆  ↦  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑡 ) } )  =  ( 𝑡  ∈  𝑆  ↦  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑡 ) } ) | 
						
							| 15 | 13 14 | fnmpti | ⊢ ( 𝑡  ∈  𝑆  ↦  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑡 ) } )  Fn  𝑆 | 
						
							| 16 | 1 4 5 6 7 2 3 | mapdfval | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑀  =  ( 𝑡  ∈  𝑆  ↦  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑡 ) } ) ) | 
						
							| 17 | 11 16 | syl | ⊢ ( 𝜑  →  𝑀  =  ( 𝑡  ∈  𝑆  ↦  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑡 ) } ) ) | 
						
							| 18 | 17 | fneq1d | ⊢ ( 𝜑  →  ( 𝑀  Fn  𝑆  ↔  ( 𝑡  ∈  𝑆  ↦  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑡 ) } )  Fn  𝑆 ) ) | 
						
							| 19 | 15 18 | mpbiri | ⊢ ( 𝜑  →  𝑀  Fn  𝑆 ) | 
						
							| 20 | 12 | rabex | ⊢ { 𝑔  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑡 ) }  ∈  V | 
						
							| 21 |  | eqid | ⊢ ( 𝑡  ∈  𝑆  ↦  { 𝑔  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑡 ) } )  =  ( 𝑡  ∈  𝑆  ↦  { 𝑔  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑡 ) } ) | 
						
							| 22 | 20 21 | fnmpti | ⊢ ( 𝑡  ∈  𝑆  ↦  { 𝑔  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑡 ) } )  Fn  𝑆 | 
						
							| 23 | 1 4 5 6 7 2 3 | mapdfval | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑀  =  ( 𝑡  ∈  𝑆  ↦  { 𝑔  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑡 ) } ) ) | 
						
							| 24 | 11 23 | syl | ⊢ ( 𝜑  →  𝑀  =  ( 𝑡  ∈  𝑆  ↦  { 𝑔  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑡 ) } ) ) | 
						
							| 25 | 24 | fneq1d | ⊢ ( 𝜑  →  ( 𝑀  Fn  𝑆  ↔  ( 𝑡  ∈  𝑆  ↦  { 𝑔  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑡 ) } )  Fn  𝑆 ) ) | 
						
							| 26 | 22 25 | mpbiri | ⊢ ( 𝜑  →  𝑀  Fn  𝑆 ) | 
						
							| 27 |  | fvelrnb | ⊢ ( 𝑀  Fn  𝑆  →  ( 𝑡  ∈  ran  𝑀  ↔  ∃ 𝑐  ∈  𝑆 ( 𝑀 ‘ 𝑐 )  =  𝑡 ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  ( 𝑡  ∈  ran  𝑀  ↔  ∃ 𝑐  ∈  𝑆 ( 𝑀 ‘ 𝑐 )  =  𝑡 ) ) | 
						
							| 29 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝑆 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝑆 )  →  𝑐  ∈  𝑆 ) | 
						
							| 31 | 1 4 5 6 7 2 3 29 30 | mapdval | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝑆 )  →  ( 𝑀 ‘ 𝑐 )  =  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) } ) | 
						
							| 32 |  | eqid | ⊢ { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  =  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) } | 
						
							| 33 | 1 2 4 5 6 7 8 9 10 32 29 30 | lclkrs2 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝑆 )  →  ( { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  𝑇  ∧  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ⊆  𝐶 ) ) | 
						
							| 34 |  | elin | ⊢ ( { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  ( 𝑇  ∩  𝒫  𝐶 )  ↔  ( { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  𝑇  ∧  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  𝒫  𝐶 ) ) | 
						
							| 35 | 12 | rabex | ⊢ { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  V | 
						
							| 36 | 35 | elpw | ⊢ ( { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  𝒫  𝐶  ↔  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ⊆  𝐶 ) | 
						
							| 37 | 36 | anbi2i | ⊢ ( ( { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  𝑇  ∧  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  𝒫  𝐶 )  ↔  ( { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  𝑇  ∧  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ⊆  𝐶 ) ) | 
						
							| 38 | 34 37 | bitr2i | ⊢ ( ( { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  𝑇  ∧  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ⊆  𝐶 )  ↔  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  ( 𝑇  ∩  𝒫  𝐶 ) ) | 
						
							| 39 | 33 38 | sylib | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝑆 )  →  { 𝑓  ∈  𝐹  ∣  ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑐 ) }  ∈  ( 𝑇  ∩  𝒫  𝐶 ) ) | 
						
							| 40 | 31 39 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝑆 )  →  ( 𝑀 ‘ 𝑐 )  ∈  ( 𝑇  ∩  𝒫  𝐶 ) ) | 
						
							| 41 |  | eleq1 | ⊢ ( ( 𝑀 ‘ 𝑐 )  =  𝑡  →  ( ( 𝑀 ‘ 𝑐 )  ∈  ( 𝑇  ∩  𝒫  𝐶 )  ↔  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) ) ) | 
						
							| 42 | 40 41 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝑆 )  →  ( ( 𝑀 ‘ 𝑐 )  =  𝑡  →  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) ) ) | 
						
							| 43 | 42 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑐  ∈  𝑆 ( 𝑀 ‘ 𝑐 )  =  𝑡  →  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) ) ) | 
						
							| 44 |  | eqid | ⊢ ∪  𝑓  ∈  𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  =  ∪  𝑓  ∈  𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) | 
						
							| 45 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 46 |  | inss1 | ⊢ ( 𝑇  ∩  𝒫  𝐶 )  ⊆  𝑇 | 
						
							| 47 | 46 | sseli | ⊢ ( 𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 )  →  𝑡  ∈  𝑇 ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 49 |  | inss2 | ⊢ ( 𝑇  ∩  𝒫  𝐶 )  ⊆  𝒫  𝐶 | 
						
							| 50 | 49 | sseli | ⊢ ( 𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 )  →  𝑡  ∈  𝒫  𝐶 ) | 
						
							| 51 | 50 | elpwid | ⊢ ( 𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 )  →  𝑡  ⊆  𝐶 ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) )  →  𝑡  ⊆  𝐶 ) | 
						
							| 53 | 1 2 4 5 6 7 8 9 10 44 45 48 52 | lcfr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) )  →  ∪  𝑓  ∈  𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ∈  𝑆 ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 45 48 52 44 | mapdrval | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) )  →  ( 𝑀 ‘ ∪  𝑓  ∈  𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  𝑡 ) | 
						
							| 55 |  | fveqeq2 | ⊢ ( 𝑐  =  ∪  𝑓  ∈  𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  →  ( ( 𝑀 ‘ 𝑐 )  =  𝑡  ↔  ( 𝑀 ‘ ∪  𝑓  ∈  𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  𝑡 ) ) | 
						
							| 56 | 55 | rspcev | ⊢ ( ( ∪  𝑓  ∈  𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ∈  𝑆  ∧  ( 𝑀 ‘ ∪  𝑓  ∈  𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  𝑡 )  →  ∃ 𝑐  ∈  𝑆 ( 𝑀 ‘ 𝑐 )  =  𝑡 ) | 
						
							| 57 | 53 54 56 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) )  →  ∃ 𝑐  ∈  𝑆 ( 𝑀 ‘ 𝑐 )  =  𝑡 ) | 
						
							| 58 | 57 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 )  →  ∃ 𝑐  ∈  𝑆 ( 𝑀 ‘ 𝑐 )  =  𝑡 ) ) | 
						
							| 59 | 43 58 | impbid | ⊢ ( 𝜑  →  ( ∃ 𝑐  ∈  𝑆 ( 𝑀 ‘ 𝑐 )  =  𝑡  ↔  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) ) ) | 
						
							| 60 | 28 59 | bitrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  ran  𝑀  ↔  𝑡  ∈  ( 𝑇  ∩  𝒫  𝐶 ) ) ) | 
						
							| 61 | 60 | eqrdv | ⊢ ( 𝜑  →  ran  𝑀  =  ( 𝑇  ∩  𝒫  𝐶 ) ) | 
						
							| 62 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑆  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 63 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑆  ∧  𝑢  ∈  𝑆 ) )  →  𝑡  ∈  𝑆 ) | 
						
							| 64 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑆  ∧  𝑢  ∈  𝑆 ) )  →  𝑢  ∈  𝑆 ) | 
						
							| 65 | 1 4 5 3 62 63 64 | mapd11 | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑆  ∧  𝑢  ∈  𝑆 ) )  →  ( ( 𝑀 ‘ 𝑡 )  =  ( 𝑀 ‘ 𝑢 )  ↔  𝑡  =  𝑢 ) ) | 
						
							| 66 | 65 | biimpd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑆  ∧  𝑢  ∈  𝑆 ) )  →  ( ( 𝑀 ‘ 𝑡 )  =  ( 𝑀 ‘ 𝑢 )  →  𝑡  =  𝑢 ) ) | 
						
							| 67 | 66 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑆 ∀ 𝑢  ∈  𝑆 ( ( 𝑀 ‘ 𝑡 )  =  ( 𝑀 ‘ 𝑢 )  →  𝑡  =  𝑢 ) ) | 
						
							| 68 |  | dff1o6 | ⊢ ( 𝑀 : 𝑆 –1-1-onto→ ( 𝑇  ∩  𝒫  𝐶 )  ↔  ( 𝑀  Fn  𝑆  ∧  ran  𝑀  =  ( 𝑇  ∩  𝒫  𝐶 )  ∧  ∀ 𝑡  ∈  𝑆 ∀ 𝑢  ∈  𝑆 ( ( 𝑀 ‘ 𝑡 )  =  ( 𝑀 ‘ 𝑢 )  →  𝑡  =  𝑢 ) ) ) | 
						
							| 69 | 19 61 67 68 | syl3anbrc | ⊢ ( 𝜑  →  𝑀 : 𝑆 –1-1-onto→ ( 𝑇  ∩  𝒫  𝐶 ) ) |