Step |
Hyp |
Ref |
Expression |
1 |
|
mapd1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapd1o.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapd1o.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapd1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapd1o.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
mapd1o.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
mapd1o.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
mapd1o.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
9 |
|
mapd1o.t |
⊢ 𝑇 = ( LSubSp ‘ 𝐷 ) |
10 |
|
mapd1o.c |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
11 |
|
mapd1o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
6
|
fvexi |
⊢ 𝐹 ∈ V |
13 |
12
|
rabex |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑡 ) } ∈ V |
14 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑆 ↦ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑡 ) } ) = ( 𝑡 ∈ 𝑆 ↦ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑡 ) } ) |
15 |
13 14
|
fnmpti |
⊢ ( 𝑡 ∈ 𝑆 ↦ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑡 ) } ) Fn 𝑆 |
16 |
1 4 5 6 7 2 3
|
mapdfval |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( 𝑡 ∈ 𝑆 ↦ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑡 ) } ) ) |
17 |
11 16
|
syl |
⊢ ( 𝜑 → 𝑀 = ( 𝑡 ∈ 𝑆 ↦ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑡 ) } ) ) |
18 |
17
|
fneq1d |
⊢ ( 𝜑 → ( 𝑀 Fn 𝑆 ↔ ( 𝑡 ∈ 𝑆 ↦ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑡 ) } ) Fn 𝑆 ) ) |
19 |
15 18
|
mpbiri |
⊢ ( 𝜑 → 𝑀 Fn 𝑆 ) |
20 |
12
|
rabex |
⊢ { 𝑔 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑡 ) } ∈ V |
21 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑆 ↦ { 𝑔 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑡 ) } ) = ( 𝑡 ∈ 𝑆 ↦ { 𝑔 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑡 ) } ) |
22 |
20 21
|
fnmpti |
⊢ ( 𝑡 ∈ 𝑆 ↦ { 𝑔 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑡 ) } ) Fn 𝑆 |
23 |
1 4 5 6 7 2 3
|
mapdfval |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( 𝑡 ∈ 𝑆 ↦ { 𝑔 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑡 ) } ) ) |
24 |
11 23
|
syl |
⊢ ( 𝜑 → 𝑀 = ( 𝑡 ∈ 𝑆 ↦ { 𝑔 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑡 ) } ) ) |
25 |
24
|
fneq1d |
⊢ ( 𝜑 → ( 𝑀 Fn 𝑆 ↔ ( 𝑡 ∈ 𝑆 ↦ { 𝑔 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑡 ) } ) Fn 𝑆 ) ) |
26 |
22 25
|
mpbiri |
⊢ ( 𝜑 → 𝑀 Fn 𝑆 ) |
27 |
|
fvelrnb |
⊢ ( 𝑀 Fn 𝑆 → ( 𝑡 ∈ ran 𝑀 ↔ ∃ 𝑐 ∈ 𝑆 ( 𝑀 ‘ 𝑐 ) = 𝑡 ) ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ran 𝑀 ↔ ∃ 𝑐 ∈ 𝑆 ( 𝑀 ‘ 𝑐 ) = 𝑡 ) ) |
29 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑆 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑆 ) → 𝑐 ∈ 𝑆 ) |
31 |
1 4 5 6 7 2 3 29 30
|
mapdval |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑆 ) → ( 𝑀 ‘ 𝑐 ) = { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ) |
32 |
|
eqid |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } = { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } |
33 |
1 2 4 5 6 7 8 9 10 32 29 30
|
lclkrs2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑆 ) → ( { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ⊆ 𝐶 ) ) |
34 |
|
elin |
⊢ ( { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ↔ ( { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝒫 𝐶 ) ) |
35 |
12
|
rabex |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ V |
36 |
35
|
elpw |
⊢ ( { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝒫 𝐶 ↔ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ⊆ 𝐶 ) |
37 |
36
|
anbi2i |
⊢ ( ( { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝒫 𝐶 ) ↔ ( { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ⊆ 𝐶 ) ) |
38 |
34 37
|
bitr2i |
⊢ ( ( { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ 𝑇 ∧ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ⊆ 𝐶 ) ↔ { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) |
39 |
33 38
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑆 ) → { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑐 ) } ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) |
40 |
31 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑆 ) → ( 𝑀 ‘ 𝑐 ) ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) |
41 |
|
eleq1 |
⊢ ( ( 𝑀 ‘ 𝑐 ) = 𝑡 → ( ( 𝑀 ‘ 𝑐 ) ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ↔ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) ) |
42 |
40 41
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑆 ) → ( ( 𝑀 ‘ 𝑐 ) = 𝑡 → 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) ) |
43 |
42
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝑆 ( 𝑀 ‘ 𝑐 ) = 𝑡 → 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) ) |
44 |
|
eqid |
⊢ ∪ 𝑓 ∈ 𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ∪ 𝑓 ∈ 𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) |
45 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
46 |
|
inss1 |
⊢ ( 𝑇 ∩ 𝒫 𝐶 ) ⊆ 𝑇 |
47 |
46
|
sseli |
⊢ ( 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) → 𝑡 ∈ 𝑇 ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → 𝑡 ∈ 𝑇 ) |
49 |
|
inss2 |
⊢ ( 𝑇 ∩ 𝒫 𝐶 ) ⊆ 𝒫 𝐶 |
50 |
49
|
sseli |
⊢ ( 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) → 𝑡 ∈ 𝒫 𝐶 ) |
51 |
50
|
elpwid |
⊢ ( 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) → 𝑡 ⊆ 𝐶 ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → 𝑡 ⊆ 𝐶 ) |
53 |
1 2 4 5 6 7 8 9 10 44 45 48 52
|
lcfr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → ∪ 𝑓 ∈ 𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ 𝑆 ) |
54 |
1 2 3 4 5 6 7 8 9 10 45 48 52 44
|
mapdrval |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → ( 𝑀 ‘ ∪ 𝑓 ∈ 𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = 𝑡 ) |
55 |
|
fveqeq2 |
⊢ ( 𝑐 = ∪ 𝑓 ∈ 𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) → ( ( 𝑀 ‘ 𝑐 ) = 𝑡 ↔ ( 𝑀 ‘ ∪ 𝑓 ∈ 𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = 𝑡 ) ) |
56 |
55
|
rspcev |
⊢ ( ( ∪ 𝑓 ∈ 𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ 𝑆 ∧ ( 𝑀 ‘ ∪ 𝑓 ∈ 𝑡 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = 𝑡 ) → ∃ 𝑐 ∈ 𝑆 ( 𝑀 ‘ 𝑐 ) = 𝑡 ) |
57 |
53 54 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) → ∃ 𝑐 ∈ 𝑆 ( 𝑀 ‘ 𝑐 ) = 𝑡 ) |
58 |
57
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) → ∃ 𝑐 ∈ 𝑆 ( 𝑀 ‘ 𝑐 ) = 𝑡 ) ) |
59 |
43 58
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝑆 ( 𝑀 ‘ 𝑐 ) = 𝑡 ↔ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) ) |
60 |
28 59
|
bitrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ran 𝑀 ↔ 𝑡 ∈ ( 𝑇 ∩ 𝒫 𝐶 ) ) ) |
61 |
60
|
eqrdv |
⊢ ( 𝜑 → ran 𝑀 = ( 𝑇 ∩ 𝒫 𝐶 ) ) |
62 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
63 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ 𝑆 ) |
64 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) |
65 |
1 4 5 3 62 63 64
|
mapd11 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑀 ‘ 𝑡 ) = ( 𝑀 ‘ 𝑢 ) ↔ 𝑡 = 𝑢 ) ) |
66 |
65
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑀 ‘ 𝑡 ) = ( 𝑀 ‘ 𝑢 ) → 𝑡 = 𝑢 ) ) |
67 |
66
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑀 ‘ 𝑡 ) = ( 𝑀 ‘ 𝑢 ) → 𝑡 = 𝑢 ) ) |
68 |
|
dff1o6 |
⊢ ( 𝑀 : 𝑆 –1-1-onto→ ( 𝑇 ∩ 𝒫 𝐶 ) ↔ ( 𝑀 Fn 𝑆 ∧ ran 𝑀 = ( 𝑇 ∩ 𝒫 𝐶 ) ∧ ∀ 𝑡 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑀 ‘ 𝑡 ) = ( 𝑀 ‘ 𝑢 ) → 𝑡 = 𝑢 ) ) ) |
69 |
19 61 67 68
|
syl3anbrc |
⊢ ( 𝜑 → 𝑀 : 𝑆 –1-1-onto→ ( 𝑇 ∩ 𝒫 𝐶 ) ) |