| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdord.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdord.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdord.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 4 |
|
mapdord.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
mapdord.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
mapdord.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 7 |
|
mapdord.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 8 |
1 2 3 4 5 6 7
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ 𝑋 ⊆ 𝑌 ) ) |
| 9 |
1 2 3 4 5 7 6
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ 𝑋 ) ↔ 𝑌 ⊆ 𝑋 ) ) |
| 10 |
8 9
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ 𝑋 ) ) ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) ) ) |
| 11 |
|
eqss |
⊢ ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 𝑌 ) ↔ ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ 𝑋 ) ) ) |
| 12 |
|
eqss |
⊢ ( 𝑋 = 𝑌 ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) ) |
| 13 |
10 11 12
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |