Metamath Proof Explorer


Theorem mapd11

Description: The map defined by df-mapd is one-to-one. Property (c) of Baer p. 40. (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapdord.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdord.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdord.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapdord.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdord.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdord.x ( 𝜑𝑋𝑆 )
mapdord.y ( 𝜑𝑌𝑆 )
Assertion mapd11 ( 𝜑 → ( ( 𝑀𝑋 ) = ( 𝑀𝑌 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 mapdord.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdord.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdord.s 𝑆 = ( LSubSp ‘ 𝑈 )
4 mapdord.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
5 mapdord.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 mapdord.x ( 𝜑𝑋𝑆 )
7 mapdord.y ( 𝜑𝑌𝑆 )
8 1 2 3 4 5 6 7 mapdord ( 𝜑 → ( ( 𝑀𝑋 ) ⊆ ( 𝑀𝑌 ) ↔ 𝑋𝑌 ) )
9 1 2 3 4 5 7 6 mapdord ( 𝜑 → ( ( 𝑀𝑌 ) ⊆ ( 𝑀𝑋 ) ↔ 𝑌𝑋 ) )
10 8 9 anbi12d ( 𝜑 → ( ( ( 𝑀𝑋 ) ⊆ ( 𝑀𝑌 ) ∧ ( 𝑀𝑌 ) ⊆ ( 𝑀𝑋 ) ) ↔ ( 𝑋𝑌𝑌𝑋 ) ) )
11 eqss ( ( 𝑀𝑋 ) = ( 𝑀𝑌 ) ↔ ( ( 𝑀𝑋 ) ⊆ ( 𝑀𝑌 ) ∧ ( 𝑀𝑌 ) ⊆ ( 𝑀𝑋 ) ) )
12 eqss ( 𝑋 = 𝑌 ↔ ( 𝑋𝑌𝑌𝑋 ) )
13 10 11 12 3bitr4g ( 𝜑 → ( ( 𝑀𝑋 ) = ( 𝑀𝑌 ) ↔ 𝑋 = 𝑌 ) )