Metamath Proof Explorer


Theorem mapddlssN

Description: The mapping of a subspace of vector space H to the dual space is a subspace of the dual space. TODO: Make this obsolete, use mapdcl2 instead. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapddlss.h 𝐻 = ( LHyp ‘ 𝐾 )
mapddlss.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapddlss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapddlss.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapddlss.d 𝐷 = ( LDual ‘ 𝑈 )
mapddlss.t 𝑇 = ( LSubSp ‘ 𝐷 )
mapddlss.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapddlss.r ( 𝜑𝑅𝑆 )
Assertion mapddlssN ( 𝜑 → ( 𝑀𝑅 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 mapddlss.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapddlss.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapddlss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapddlss.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 mapddlss.d 𝐷 = ( LDual ‘ 𝑈 )
6 mapddlss.t 𝑇 = ( LSubSp ‘ 𝐷 )
7 mapddlss.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 mapddlss.r ( 𝜑𝑅𝑆 )
9 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
10 eqid ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 )
11 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
12 1 3 4 9 10 11 2 7 8 mapdval ( 𝜑 → ( 𝑀𝑅 ) = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ∧ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ⊆ 𝑅 ) } )
13 eqid { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ∧ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ⊆ 𝑅 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ∧ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ⊆ 𝑅 ) }
14 1 11 3 4 9 10 5 6 13 7 8 lclkrs ( 𝜑 → { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ∧ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ⊆ 𝑅 ) } ∈ 𝑇 )
15 12 14 eqeltrd ( 𝜑 → ( 𝑀𝑅 ) ∈ 𝑇 )