Metamath Proof Explorer


Theorem mapdcl2

Description: The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015)

Ref Expression
Hypotheses mapdlss.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdlss.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdlss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdlss.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapdlss.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdlss.t 𝑇 = ( LSubSp ‘ 𝐶 )
mapdlss.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdlss.r ( 𝜑𝑅𝑆 )
Assertion mapdcl2 ( 𝜑 → ( 𝑀𝑅 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 mapdlss.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdlss.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdlss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdlss.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 mapdlss.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 mapdlss.t 𝑇 = ( LSubSp ‘ 𝐶 )
7 mapdlss.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 mapdlss.r ( 𝜑𝑅𝑆 )
9 1 2 3 4 7 8 mapdcl ( 𝜑 → ( 𝑀𝑅 ) ∈ ran 𝑀 )
10 1 2 5 6 7 mapdrn2 ( 𝜑 → ran 𝑀 = 𝑇 )
11 9 10 eleqtrd ( 𝜑 → ( 𝑀𝑅 ) ∈ 𝑇 )