Description: The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdlss.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
mapdlss.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdlss.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdlss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) | ||
mapdlss.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdlss.t | ⊢ 𝑇 = ( LSubSp ‘ 𝐶 ) | ||
mapdlss.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
mapdlss.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) | ||
Assertion | mapdcl2 | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑅 ) ∈ 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdlss.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | mapdlss.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | mapdlss.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | mapdlss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) | |
5 | mapdlss.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | |
6 | mapdlss.t | ⊢ 𝑇 = ( LSubSp ‘ 𝐶 ) | |
7 | mapdlss.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
8 | mapdlss.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) | |
9 | 1 2 3 4 7 8 | mapdcl | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑅 ) ∈ ran 𝑀 ) |
10 | 1 2 5 6 7 | mapdrn2 | ⊢ ( 𝜑 → ran 𝑀 = 𝑇 ) |
11 | 9 10 | eleqtrd | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑅 ) ∈ 𝑇 ) |