Metamath Proof Explorer


Theorem mapdrn2

Description: Range of the map defined by df-mapd . TODO: this seems to be needed a lot in hdmaprnlem3eN etc. Would it be better to change df-mapd theorems to use LSubSpC instead of ran M ? (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdrn2.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdrn2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdrn2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdrn2.t 𝑇 = ( LSubSp ‘ 𝐶 )
mapdrn2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion mapdrn2 ( 𝜑 → ran 𝑀 = 𝑇 )

Proof

Step Hyp Ref Expression
1 mapdrn2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdrn2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdrn2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
4 mapdrn2.t 𝑇 = ( LSubSp ‘ 𝐶 )
5 mapdrn2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 eqid ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
9 eqid ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
10 eqid ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
11 eqid ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
12 eqid { 𝑓 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) }
13 1 6 2 7 8 9 10 11 12 5 mapdrn ( 𝜑 → ran 𝑀 = ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑓 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) } ) )
14 1 6 3 4 7 8 9 10 11 12 5 lcdlss ( 𝜑𝑇 = ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑓 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) } ) )
15 13 14 eqtr4d ( 𝜑 → ran 𝑀 = 𝑇 )