| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdrn2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdrn2.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdrn2.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
mapdrn2.t |
⊢ 𝑇 = ( LSubSp ‘ 𝐶 ) |
| 5 |
|
mapdrn2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
eqid |
⊢ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 9 |
|
eqid |
⊢ ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 10 |
|
eqid |
⊢ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 11 |
|
eqid |
⊢ ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 12 |
|
eqid |
⊢ { 𝑓 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) } |
| 13 |
1 6 2 7 8 9 10 11 12 5
|
mapdrn |
⊢ ( 𝜑 → ran 𝑀 = ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑓 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) } ) ) |
| 14 |
1 6 3 4 7 8 9 10 11 12 5
|
lcdlss |
⊢ ( 𝜑 → 𝑇 = ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑓 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑓 ) } ) ) |
| 15 |
13 14
|
eqtr4d |
⊢ ( 𝜑 → ran 𝑀 = 𝑇 ) |