Metamath Proof Explorer


Theorem mapdrn2

Description: Range of the map defined by df-mapd . TODO: this seems to be needed a lot in hdmaprnlem3eN etc. Would it be better to change df-mapd theorems to use LSubSpC instead of ran M ? (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdrn2.h
|- H = ( LHyp ` K )
mapdrn2.m
|- M = ( ( mapd ` K ) ` W )
mapdrn2.c
|- C = ( ( LCDual ` K ) ` W )
mapdrn2.t
|- T = ( LSubSp ` C )
mapdrn2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion mapdrn2
|- ( ph -> ran M = T )

Proof

Step Hyp Ref Expression
1 mapdrn2.h
 |-  H = ( LHyp ` K )
2 mapdrn2.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdrn2.c
 |-  C = ( ( LCDual ` K ) ` W )
4 mapdrn2.t
 |-  T = ( LSubSp ` C )
5 mapdrn2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
7 eqid
 |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W )
8 eqid
 |-  ( LFnl ` ( ( DVecH ` K ) ` W ) ) = ( LFnl ` ( ( DVecH ` K ) ` W ) )
9 eqid
 |-  ( LKer ` ( ( DVecH ` K ) ` W ) ) = ( LKer ` ( ( DVecH ` K ) ` W ) )
10 eqid
 |-  ( LDual ` ( ( DVecH ` K ) ` W ) ) = ( LDual ` ( ( DVecH ` K ) ` W ) )
11 eqid
 |-  ( LSubSp ` ( LDual ` ( ( DVecH ` K ) ` W ) ) ) = ( LSubSp ` ( LDual ` ( ( DVecH ` K ) ` W ) ) )
12 eqid
 |-  { f e. ( LFnl ` ( ( DVecH ` K ) ` W ) ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) ) ) = ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) } = { f e. ( LFnl ` ( ( DVecH ` K ) ` W ) ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) ) ) = ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) }
13 1 6 2 7 8 9 10 11 12 5 mapdrn
 |-  ( ph -> ran M = ( ( LSubSp ` ( LDual ` ( ( DVecH ` K ) ` W ) ) ) i^i ~P { f e. ( LFnl ` ( ( DVecH ` K ) ` W ) ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) ) ) = ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) } ) )
14 1 6 3 4 7 8 9 10 11 12 5 lcdlss
 |-  ( ph -> T = ( ( LSubSp ` ( LDual ` ( ( DVecH ` K ) ` W ) ) ) i^i ~P { f e. ( LFnl ` ( ( DVecH ` K ) ` W ) ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) ) ) = ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) } ) )
15 13 14 eqtr4d
 |-  ( ph -> ran M = T )