Step |
Hyp |
Ref |
Expression |
1 |
|
mapdrn2.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdrn2.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdrn2.c |
|- C = ( ( LCDual ` K ) ` W ) |
4 |
|
mapdrn2.t |
|- T = ( LSubSp ` C ) |
5 |
|
mapdrn2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
7 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
8 |
|
eqid |
|- ( LFnl ` ( ( DVecH ` K ) ` W ) ) = ( LFnl ` ( ( DVecH ` K ) ` W ) ) |
9 |
|
eqid |
|- ( LKer ` ( ( DVecH ` K ) ` W ) ) = ( LKer ` ( ( DVecH ` K ) ` W ) ) |
10 |
|
eqid |
|- ( LDual ` ( ( DVecH ` K ) ` W ) ) = ( LDual ` ( ( DVecH ` K ) ` W ) ) |
11 |
|
eqid |
|- ( LSubSp ` ( LDual ` ( ( DVecH ` K ) ` W ) ) ) = ( LSubSp ` ( LDual ` ( ( DVecH ` K ) ` W ) ) ) |
12 |
|
eqid |
|- { f e. ( LFnl ` ( ( DVecH ` K ) ` W ) ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) ) ) = ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) } = { f e. ( LFnl ` ( ( DVecH ` K ) ` W ) ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) ) ) = ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) } |
13 |
1 6 2 7 8 9 10 11 12 5
|
mapdrn |
|- ( ph -> ran M = ( ( LSubSp ` ( LDual ` ( ( DVecH ` K ) ` W ) ) ) i^i ~P { f e. ( LFnl ` ( ( DVecH ` K ) ` W ) ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) ) ) = ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) } ) ) |
14 |
1 6 3 4 7 8 9 10 11 12 5
|
lcdlss |
|- ( ph -> T = ( ( LSubSp ` ( LDual ` ( ( DVecH ` K ) ` W ) ) ) i^i ~P { f e. ( LFnl ` ( ( DVecH ` K ) ` W ) ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) ) ) = ( ( LKer ` ( ( DVecH ` K ) ` W ) ) ` f ) } ) ) |
15 |
13 14
|
eqtr4d |
|- ( ph -> ran M = T ) |