Metamath Proof Explorer


Theorem mapdrn2

Description: Range of the map defined by df-mapd . TODO: this seems to be needed a lot in hdmaprnlem3eN etc. Would it be better to change df-mapd theorems to use LSubSpC instead of ran M ? (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdrn2.h H=LHypK
mapdrn2.m M=mapdKW
mapdrn2.c C=LCDualKW
mapdrn2.t T=LSubSpC
mapdrn2.k φKHLWH
Assertion mapdrn2 φranM=T

Proof

Step Hyp Ref Expression
1 mapdrn2.h H=LHypK
2 mapdrn2.m M=mapdKW
3 mapdrn2.c C=LCDualKW
4 mapdrn2.t T=LSubSpC
5 mapdrn2.k φKHLWH
6 eqid ocHKW=ocHKW
7 eqid DVecHKW=DVecHKW
8 eqid LFnlDVecHKW=LFnlDVecHKW
9 eqid LKerDVecHKW=LKerDVecHKW
10 eqid LDualDVecHKW=LDualDVecHKW
11 eqid LSubSpLDualDVecHKW=LSubSpLDualDVecHKW
12 eqid fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf=fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf
13 1 6 2 7 8 9 10 11 12 5 mapdrn φranM=LSubSpLDualDVecHKW𝒫fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf
14 1 6 3 4 7 8 9 10 11 12 5 lcdlss φT=LSubSpLDualDVecHKW𝒫fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf
15 13 14 eqtr4d φranM=T