Metamath Proof Explorer


Theorem hdmaprnlem3eN

Description: Lemma for hdmaprnN . (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
hdmaprnlem1.d D=BaseC
hdmaprnlem1.q Q=0C
hdmaprnlem1.o 0˙=0U
hdmaprnlem1.a ˙=+C
hdmaprnlem3e.p +˙=+U
Assertion hdmaprnlem3eN φtNv0˙LSu˙s=MNu+˙t

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 hdmaprnlem1.d D=BaseC
16 hdmaprnlem1.q Q=0C
17 hdmaprnlem1.o 0˙=0U
18 hdmaprnlem1.a ˙=+C
19 hdmaprnlem3e.p +˙=+U
20 eqid LSAtomsU=LSAtomsU
21 1 2 9 dvhlvec φULVec
22 eqid LSAtomsC=LSAtomsC
23 1 5 9 lcdlmod φCLMod
24 1 2 3 5 15 8 9 13 hdmapcl φSuD
25 10 eldifad φsD
26 15 18 lmodvacl CLModSuDsDSu˙sD
27 23 24 25 26 syl3anc φSu˙sD
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 hdmaprnlem1N φLSuLs
29 15 18 16 6 23 24 25 28 lmodindp1 φSu˙sQ
30 eldifsn Su˙sDQSu˙sDSu˙sQ
31 27 29 30 sylanbrc φSu˙sDQ
32 15 6 16 22 23 31 lsatlspsn φLSu˙sLSAtomsC
33 1 7 2 20 5 22 9 32 mapdcnvatN φM-1LSu˙sLSAtomsU
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmaprnlem3uN φNuM-1LSu˙s
35 34 necomd φM-1LSu˙sNu
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmaprnlem3N φNvM-1LSu˙s
37 36 necomd φM-1LSu˙sNv
38 eqid LSubSpC=LSubSpC
39 eqid LSubSpU=LSubSpU
40 1 2 9 dvhlmod φULMod
41 3 39 4 lspsncl ULModuVNuLSubSpU
42 40 13 41 syl2anc φNuLSubSpU
43 1 7 2 39 5 38 9 42 mapdcl2 φMNuLSubSpC
44 3 39 4 lspsncl ULModvVNvLSubSpU
45 40 11 44 syl2anc φNvLSubSpU
46 1 7 2 39 5 38 9 45 mapdcl2 φMNvLSubSpC
47 eqid LSSumC=LSSumC
48 38 47 lsmcl CLModMNuLSubSpCMNvLSubSpCMNuLSSumCMNvLSubSpC
49 23 43 46 48 syl3anc φMNuLSSumCMNvLSubSpC
50 38 lsssssubg CLModLSubSpCSubGrpC
51 23 50 syl φLSubSpCSubGrpC
52 51 43 sseldd φMNuSubGrpC
53 51 46 sseldd φMNvSubGrpC
54 15 6 lspsnid CLModSuDSuLSu
55 23 24 54 syl2anc φSuLSu
56 1 2 3 4 5 6 7 8 9 13 hdmap10 φMNu=LSu
57 55 56 eleqtrrd φSuMNu
58 eqimss2 MNv=LsLsMNv
59 12 58 syl φLsMNv
60 15 38 6 23 46 25 lspsnel5 φsMNvLsMNv
61 59 60 mpbird φsMNv
62 18 47 lsmelvali MNuSubGrpCMNvSubGrpCSuMNusMNvSu˙sMNuLSSumCMNv
63 52 53 57 61 62 syl22anc φSu˙sMNuLSSumCMNv
64 38 6 23 49 63 lspsnel5a φLSu˙sMNuLSSumCMNv
65 eqid LSSumU=LSSumU
66 1 7 2 39 65 5 47 9 42 45 mapdlsm φMNuLSSumUNv=MNuLSSumCMNv
67 64 66 sseqtrrd φLSu˙sMNuLSSumUNv
68 15 38 6 lspsncl CLModSu˙sDLSu˙sLSubSpC
69 23 27 68 syl2anc φLSu˙sLSubSpC
70 1 7 5 38 9 mapdrn2 φranM=LSubSpC
71 69 70 eleqtrrd φLSu˙sranM
72 39 65 lsmcl ULModNuLSubSpUNvLSubSpUNuLSSumUNvLSubSpU
73 40 42 45 72 syl3anc φNuLSSumUNvLSubSpU
74 1 7 2 39 9 73 mapdcl φMNuLSSumUNvranM
75 1 7 9 71 74 mapdcnvordN φM-1LSu˙sM-1MNuLSSumUNvLSu˙sMNuLSSumUNv
76 67 75 mpbird φM-1LSu˙sM-1MNuLSSumUNv
77 3 4 65 40 13 11 lsmpr φNuv=NuLSSumUNv
78 1 7 2 39 9 73 mapdcnvid1N φM-1MNuLSSumUNv=NuLSSumUNv
79 77 78 eqtr4d φNuv=M-1MNuLSSumUNv
80 76 79 sseqtrrd φM-1LSu˙sNuv
81 3 19 17 4 20 21 33 13 11 35 37 80 lsatfixedN φtNv0˙M-1LSu˙s=Nu+˙t
82 simpr φtNv0˙M-1LSu˙s=Nu+˙tM-1LSu˙s=Nu+˙t
83 9 ad2antrr φtNv0˙M-1LSu˙s=Nu+˙tKHLWH
84 40 ad2antrr φtNv0˙M-1LSu˙s=Nu+˙tULMod
85 13 ad2antrr φtNv0˙M-1LSu˙s=Nu+˙tuV
86 10 ad2antrr φtNv0˙M-1LSu˙s=Nu+˙tsDQ
87 11 ad2antrr φtNv0˙M-1LSu˙s=Nu+˙tvV
88 12 ad2antrr φtNv0˙M-1LSu˙s=Nu+˙tMNv=Ls
89 14 ad2antrr φtNv0˙M-1LSu˙s=Nu+˙t¬uNv
90 simplr φtNv0˙M-1LSu˙s=Nu+˙ttNv0˙
91 1 2 3 4 5 6 7 8 83 86 87 88 85 89 15 16 17 18 90 hdmaprnlem4tN φtNv0˙M-1LSu˙s=Nu+˙ttV
92 3 19 lmodvacl ULModuVtVu+˙tV
93 84 85 91 92 syl3anc φtNv0˙M-1LSu˙s=Nu+˙tu+˙tV
94 3 39 4 lspsncl ULModu+˙tVNu+˙tLSubSpU
95 84 93 94 syl2anc φtNv0˙M-1LSu˙s=Nu+˙tNu+˙tLSubSpU
96 1 7 2 39 83 95 mapdcnvid1N φtNv0˙M-1LSu˙s=Nu+˙tM-1MNu+˙t=Nu+˙t
97 82 96 eqtr4d φtNv0˙M-1LSu˙s=Nu+˙tM-1LSu˙s=M-1MNu+˙t
98 71 ad2antrr φtNv0˙M-1LSu˙s=Nu+˙tLSu˙sranM
99 1 7 2 39 83 95 mapdcl φtNv0˙M-1LSu˙s=Nu+˙tMNu+˙tranM
100 1 7 83 98 99 mapdcnv11N φtNv0˙M-1LSu˙s=Nu+˙tM-1LSu˙s=M-1MNu+˙tLSu˙s=MNu+˙t
101 97 100 mpbid φtNv0˙M-1LSu˙s=Nu+˙tLSu˙s=MNu+˙t
102 101 ex φtNv0˙M-1LSu˙s=Nu+˙tLSu˙s=MNu+˙t
103 102 reximdva φtNv0˙M-1LSu˙s=Nu+˙ttNv0˙LSu˙s=MNu+˙t
104 81 103 mpd φtNv0˙LSu˙s=MNu+˙t