Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
mapdcl
Next ⟩
mapdcnvid1N
Metamath Proof Explorer
Ascii
Unicode
Theorem
mapdcl
Description:
Closure the value of the map defined by
df-mapd
.
(Contributed by
NM
, 13-Mar-2015)
Ref
Expression
Hypotheses
mapdcnvcl.h
⊢
H
=
LHyp
⁡
K
mapdcnvcl.m
⊢
M
=
mapd
⁡
K
⁡
W
mapdcnvcl.u
⊢
U
=
DVecH
⁡
K
⁡
W
mapdcnvcl.s
⊢
S
=
LSubSp
⁡
U
mapdcnvcl.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
mapdcl.x
⊢
φ
→
X
∈
S
Assertion
mapdcl
⊢
φ
→
M
⁡
X
∈
ran
⁡
M
Proof
Step
Hyp
Ref
Expression
1
mapdcnvcl.h
⊢
H
=
LHyp
⁡
K
2
mapdcnvcl.m
⊢
M
=
mapd
⁡
K
⁡
W
3
mapdcnvcl.u
⊢
U
=
DVecH
⁡
K
⁡
W
4
mapdcnvcl.s
⊢
S
=
LSubSp
⁡
U
5
mapdcnvcl.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
6
mapdcl.x
⊢
φ
→
X
∈
S
7
eqid
⊢
ocH
⁡
K
⁡
W
=
ocH
⁡
K
⁡
W
8
eqid
⊢
LFnl
⁡
U
=
LFnl
⁡
U
9
eqid
⊢
LKer
⁡
U
=
LKer
⁡
U
10
eqid
⊢
LDual
⁡
U
=
LDual
⁡
U
11
eqid
⊢
LSubSp
⁡
LDual
⁡
U
=
LSubSp
⁡
LDual
⁡
U
12
eqid
⊢
g
∈
LFnl
⁡
U
|
ocH
⁡
K
⁡
W
⁡
ocH
⁡
K
⁡
W
⁡
LKer
⁡
U
⁡
g
=
LKer
⁡
U
⁡
g
=
g
∈
LFnl
⁡
U
|
ocH
⁡
K
⁡
W
⁡
ocH
⁡
K
⁡
W
⁡
LKer
⁡
U
⁡
g
=
LKer
⁡
U
⁡
g
13
1
7
2
3
4
8
9
10
11
12
5
mapd1o
⊢
φ
→
M
:
S
⟶
1-1 onto
LSubSp
⁡
LDual
⁡
U
∩
𝒫
g
∈
LFnl
⁡
U
|
ocH
⁡
K
⁡
W
⁡
ocH
⁡
K
⁡
W
⁡
LKer
⁡
U
⁡
g
=
LKer
⁡
U
⁡
g
14
f1ofn
⊢
M
:
S
⟶
1-1 onto
LSubSp
⁡
LDual
⁡
U
∩
𝒫
g
∈
LFnl
⁡
U
|
ocH
⁡
K
⁡
W
⁡
ocH
⁡
K
⁡
W
⁡
LKer
⁡
U
⁡
g
=
LKer
⁡
U
⁡
g
→
M
Fn
S
15
13
14
syl
⊢
φ
→
M
Fn
S
16
dffn3
⊢
M
Fn
S
↔
M
:
S
⟶
ran
⁡
M
17
15
16
sylib
⊢
φ
→
M
:
S
⟶
ran
⁡
M
18
17
6
ffvelrnd
⊢
φ
→
M
⁡
X
∈
ran
⁡
M