Step |
Hyp |
Ref |
Expression |
1 |
|
mapdcnvcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdcnvcl.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdcnvcl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdcnvcl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
mapdcnvcl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
mapdcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
7 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
9 |
|
eqid |
⊢ ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 ) |
10 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
11 |
|
eqid |
⊢ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) |
12 |
|
eqid |
⊢ { 𝑔 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) } = { 𝑔 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) } |
13 |
1 7 2 3 4 8 9 10 11 12 5
|
mapd1o |
⊢ ( 𝜑 → 𝑀 : 𝑆 –1-1-onto→ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) } ) ) |
14 |
|
f1ofn |
⊢ ( 𝑀 : 𝑆 –1-1-onto→ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) } ) → 𝑀 Fn 𝑆 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑀 Fn 𝑆 ) |
16 |
|
dffn3 |
⊢ ( 𝑀 Fn 𝑆 ↔ 𝑀 : 𝑆 ⟶ ran 𝑀 ) |
17 |
15 16
|
sylib |
⊢ ( 𝜑 → 𝑀 : 𝑆 ⟶ ran 𝑀 ) |
18 |
17 6
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ran 𝑀 ) |