| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdcnvcl.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdcnvcl.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdcnvcl.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdcnvcl.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 5 |  | mapdcnvcl.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | mapdcl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑆 ) | 
						
							| 7 |  | eqid | ⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( LFnl ‘ 𝑈 )  =  ( LFnl ‘ 𝑈 ) | 
						
							| 9 |  | eqid | ⊢ ( LKer ‘ 𝑈 )  =  ( LKer ‘ 𝑈 ) | 
						
							| 10 |  | eqid | ⊢ ( LDual ‘ 𝑈 )  =  ( LDual ‘ 𝑈 ) | 
						
							| 11 |  | eqid | ⊢ ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  =  ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) | 
						
							| 12 |  | eqid | ⊢ { 𝑔  ∈  ( LFnl ‘ 𝑈 )  ∣  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) ) )  =  ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) }  =  { 𝑔  ∈  ( LFnl ‘ 𝑈 )  ∣  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) ) )  =  ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) } | 
						
							| 13 | 1 7 2 3 4 8 9 10 11 12 5 | mapd1o | ⊢ ( 𝜑  →  𝑀 : 𝑆 –1-1-onto→ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  { 𝑔  ∈  ( LFnl ‘ 𝑈 )  ∣  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) ) )  =  ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) } ) ) | 
						
							| 14 |  | f1ocnvfv1 | ⊢ ( ( 𝑀 : 𝑆 –1-1-onto→ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  { 𝑔  ∈  ( LFnl ‘ 𝑈 )  ∣  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) ) )  =  ( ( LKer ‘ 𝑈 ) ‘ 𝑔 ) } )  ∧  𝑋  ∈  𝑆 )  →  ( ◡ 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 15 | 13 6 14 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) )  =  𝑋 ) |