Metamath Proof Explorer


Theorem mapdcnvid1N

Description: Converse of the value of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdcnvcl.h H=LHypK
mapdcnvcl.m M=mapdKW
mapdcnvcl.u U=DVecHKW
mapdcnvcl.s S=LSubSpU
mapdcnvcl.k φKHLWH
mapdcl.x φXS
Assertion mapdcnvid1N φM-1MX=X

Proof

Step Hyp Ref Expression
1 mapdcnvcl.h H=LHypK
2 mapdcnvcl.m M=mapdKW
3 mapdcnvcl.u U=DVecHKW
4 mapdcnvcl.s S=LSubSpU
5 mapdcnvcl.k φKHLWH
6 mapdcl.x φXS
7 eqid ocHKW=ocHKW
8 eqid LFnlU=LFnlU
9 eqid LKerU=LKerU
10 eqid LDualU=LDualU
11 eqid LSubSpLDualU=LSubSpLDualU
12 eqid gLFnlU|ocHKWocHKWLKerUg=LKerUg=gLFnlU|ocHKWocHKWLKerUg=LKerUg
13 1 7 2 3 4 8 9 10 11 12 5 mapd1o φM:S1-1 ontoLSubSpLDualU𝒫gLFnlU|ocHKWocHKWLKerUg=LKerUg
14 f1ocnvfv1 M:S1-1 ontoLSubSpLDualU𝒫gLFnlU|ocHKWocHKWLKerUg=LKerUgXSM-1MX=X
15 13 6 14 syl2anc φM-1MX=X