| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdcnvcl.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdcnvcl.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdcnvcl.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdcnvcl.s |  |-  S = ( LSubSp ` U ) | 
						
							| 5 |  | mapdcnvcl.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | mapdcl.x |  |-  ( ph -> X e. S ) | 
						
							| 7 |  | eqid |  |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) | 
						
							| 8 |  | eqid |  |-  ( LFnl ` U ) = ( LFnl ` U ) | 
						
							| 9 |  | eqid |  |-  ( LKer ` U ) = ( LKer ` U ) | 
						
							| 10 |  | eqid |  |-  ( LDual ` U ) = ( LDual ` U ) | 
						
							| 11 |  | eqid |  |-  ( LSubSp ` ( LDual ` U ) ) = ( LSubSp ` ( LDual ` U ) ) | 
						
							| 12 |  | eqid |  |-  { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } = { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } | 
						
							| 13 | 1 7 2 3 4 8 9 10 11 12 5 | mapd1o |  |-  ( ph -> M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) ) | 
						
							| 14 |  | f1ocnvfv1 |  |-  ( ( M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) /\ X e. S ) -> ( `' M ` ( M ` X ) ) = X ) | 
						
							| 15 | 13 6 14 | syl2anc |  |-  ( ph -> ( `' M ` ( M ` X ) ) = X ) |