Metamath Proof Explorer


Theorem mapdcnvid1N

Description: Converse of the value of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdcnvcl.h
|- H = ( LHyp ` K )
mapdcnvcl.m
|- M = ( ( mapd ` K ) ` W )
mapdcnvcl.u
|- U = ( ( DVecH ` K ) ` W )
mapdcnvcl.s
|- S = ( LSubSp ` U )
mapdcnvcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdcl.x
|- ( ph -> X e. S )
Assertion mapdcnvid1N
|- ( ph -> ( `' M ` ( M ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 mapdcnvcl.h
 |-  H = ( LHyp ` K )
2 mapdcnvcl.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdcnvcl.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdcnvcl.s
 |-  S = ( LSubSp ` U )
5 mapdcnvcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 mapdcl.x
 |-  ( ph -> X e. S )
7 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
8 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
9 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
10 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
11 eqid
 |-  ( LSubSp ` ( LDual ` U ) ) = ( LSubSp ` ( LDual ` U ) )
12 eqid
 |-  { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } = { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) }
13 1 7 2 3 4 8 9 10 11 12 5 mapd1o
 |-  ( ph -> M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) )
14 f1ocnvfv1
 |-  ( ( M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) /\ X e. S ) -> ( `' M ` ( M ` X ) ) = X )
15 13 6 14 syl2anc
 |-  ( ph -> ( `' M ` ( M ` X ) ) = X )