Step |
Hyp |
Ref |
Expression |
1 |
|
mapdcnvcl.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdcnvcl.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdcnvcl.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdcnvcl.s |
|- S = ( LSubSp ` U ) |
5 |
|
mapdcnvcl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
mapdcl.x |
|- ( ph -> X e. S ) |
7 |
|
mapdsord.x |
|- ( ph -> Y e. S ) |
8 |
1 3 4 2 5 6 7
|
mapdord |
|- ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) ) |
9 |
1 3 4 2 5 6 7
|
mapd11 |
|- ( ph -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) ) |
10 |
9
|
necon3bid |
|- ( ph -> ( ( M ` X ) =/= ( M ` Y ) <-> X =/= Y ) ) |
11 |
8 10
|
anbi12d |
|- ( ph -> ( ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` X ) =/= ( M ` Y ) ) <-> ( X C_ Y /\ X =/= Y ) ) ) |
12 |
|
df-pss |
|- ( ( M ` X ) C. ( M ` Y ) <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` X ) =/= ( M ` Y ) ) ) |
13 |
|
df-pss |
|- ( X C. Y <-> ( X C_ Y /\ X =/= Y ) ) |
14 |
11 12 13
|
3bitr4g |
|- ( ph -> ( ( M ` X ) C. ( M ` Y ) <-> X C. Y ) ) |