| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdcnvcl.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdcnvcl.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdcnvcl.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdcnvcl.s |  |-  S = ( LSubSp ` U ) | 
						
							| 5 |  | mapdcnvcl.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | mapdcl.x |  |-  ( ph -> X e. S ) | 
						
							| 7 |  | mapdsord.x |  |-  ( ph -> Y e. S ) | 
						
							| 8 | 1 3 4 2 5 6 7 | mapdord |  |-  ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) ) | 
						
							| 9 | 1 3 4 2 5 6 7 | mapd11 |  |-  ( ph -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) ) | 
						
							| 10 | 9 | necon3bid |  |-  ( ph -> ( ( M ` X ) =/= ( M ` Y ) <-> X =/= Y ) ) | 
						
							| 11 | 8 10 | anbi12d |  |-  ( ph -> ( ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` X ) =/= ( M ` Y ) ) <-> ( X C_ Y /\ X =/= Y ) ) ) | 
						
							| 12 |  | df-pss |  |-  ( ( M ` X ) C. ( M ` Y ) <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` X ) =/= ( M ` Y ) ) ) | 
						
							| 13 |  | df-pss |  |-  ( X C. Y <-> ( X C_ Y /\ X =/= Y ) ) | 
						
							| 14 | 11 12 13 | 3bitr4g |  |-  ( ph -> ( ( M ` X ) C. ( M ` Y ) <-> X C. Y ) ) |