Metamath Proof Explorer


Theorem mapdsord

Description: Strong ordering property of themap defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdcnvcl.h
|- H = ( LHyp ` K )
mapdcnvcl.m
|- M = ( ( mapd ` K ) ` W )
mapdcnvcl.u
|- U = ( ( DVecH ` K ) ` W )
mapdcnvcl.s
|- S = ( LSubSp ` U )
mapdcnvcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdcl.x
|- ( ph -> X e. S )
mapdsord.x
|- ( ph -> Y e. S )
Assertion mapdsord
|- ( ph -> ( ( M ` X ) C. ( M ` Y ) <-> X C. Y ) )

Proof

Step Hyp Ref Expression
1 mapdcnvcl.h
 |-  H = ( LHyp ` K )
2 mapdcnvcl.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdcnvcl.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdcnvcl.s
 |-  S = ( LSubSp ` U )
5 mapdcnvcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 mapdcl.x
 |-  ( ph -> X e. S )
7 mapdsord.x
 |-  ( ph -> Y e. S )
8 1 3 4 2 5 6 7 mapdord
 |-  ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) )
9 1 3 4 2 5 6 7 mapd11
 |-  ( ph -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) )
10 9 necon3bid
 |-  ( ph -> ( ( M ` X ) =/= ( M ` Y ) <-> X =/= Y ) )
11 8 10 anbi12d
 |-  ( ph -> ( ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` X ) =/= ( M ` Y ) ) <-> ( X C_ Y /\ X =/= Y ) ) )
12 df-pss
 |-  ( ( M ` X ) C. ( M ` Y ) <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` X ) =/= ( M ` Y ) ) )
13 df-pss
 |-  ( X C. Y <-> ( X C_ Y /\ X =/= Y ) )
14 11 12 13 3bitr4g
 |-  ( ph -> ( ( M ` X ) C. ( M ` Y ) <-> X C. Y ) )