| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdcnvcl.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdcnvcl.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdcnvcl.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdcnvcl.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 5 |  | mapdcnvcl.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | mapdcl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑆 ) | 
						
							| 7 |  | mapdsord.x | ⊢ ( 𝜑  →  𝑌  ∈  𝑆 ) | 
						
							| 8 | 1 3 4 2 5 6 7 | mapdord | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑋 )  ⊆  ( 𝑀 ‘ 𝑌 )  ↔  𝑋  ⊆  𝑌 ) ) | 
						
							| 9 | 1 3 4 2 5 6 7 | mapd11 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑌 )  ↔  𝑋  =  𝑌 ) ) | 
						
							| 10 | 9 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑋 )  ≠  ( 𝑀 ‘ 𝑌 )  ↔  𝑋  ≠  𝑌 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ 𝑋 )  ⊆  ( 𝑀 ‘ 𝑌 )  ∧  ( 𝑀 ‘ 𝑋 )  ≠  ( 𝑀 ‘ 𝑌 ) )  ↔  ( 𝑋  ⊆  𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 12 |  | df-pss | ⊢ ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑌 )  ↔  ( ( 𝑀 ‘ 𝑋 )  ⊆  ( 𝑀 ‘ 𝑌 )  ∧  ( 𝑀 ‘ 𝑋 )  ≠  ( 𝑀 ‘ 𝑌 ) ) ) | 
						
							| 13 |  | df-pss | ⊢ ( 𝑋  ⊊  𝑌  ↔  ( 𝑋  ⊆  𝑌  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 14 | 11 12 13 | 3bitr4g | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑌 )  ↔  𝑋  ⊊  𝑌 ) ) |