Metamath Proof Explorer


Theorem mapdcl2

Description: The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015)

Ref Expression
Hypotheses mapdlss.h
|- H = ( LHyp ` K )
mapdlss.m
|- M = ( ( mapd ` K ) ` W )
mapdlss.u
|- U = ( ( DVecH ` K ) ` W )
mapdlss.s
|- S = ( LSubSp ` U )
mapdlss.c
|- C = ( ( LCDual ` K ) ` W )
mapdlss.t
|- T = ( LSubSp ` C )
mapdlss.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdlss.r
|- ( ph -> R e. S )
Assertion mapdcl2
|- ( ph -> ( M ` R ) e. T )

Proof

Step Hyp Ref Expression
1 mapdlss.h
 |-  H = ( LHyp ` K )
2 mapdlss.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdlss.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdlss.s
 |-  S = ( LSubSp ` U )
5 mapdlss.c
 |-  C = ( ( LCDual ` K ) ` W )
6 mapdlss.t
 |-  T = ( LSubSp ` C )
7 mapdlss.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 mapdlss.r
 |-  ( ph -> R e. S )
9 1 2 3 4 7 8 mapdcl
 |-  ( ph -> ( M ` R ) e. ran M )
10 1 2 5 6 7 mapdrn2
 |-  ( ph -> ran M = T )
11 9 10 eleqtrd
 |-  ( ph -> ( M ` R ) e. T )