Description: The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdlss.h | |- H = ( LHyp ` K ) |
|
mapdlss.m | |- M = ( ( mapd ` K ) ` W ) |
||
mapdlss.u | |- U = ( ( DVecH ` K ) ` W ) |
||
mapdlss.s | |- S = ( LSubSp ` U ) |
||
mapdlss.c | |- C = ( ( LCDual ` K ) ` W ) |
||
mapdlss.t | |- T = ( LSubSp ` C ) |
||
mapdlss.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
mapdlss.r | |- ( ph -> R e. S ) |
||
Assertion | mapdcl2 | |- ( ph -> ( M ` R ) e. T ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdlss.h | |- H = ( LHyp ` K ) |
|
2 | mapdlss.m | |- M = ( ( mapd ` K ) ` W ) |
|
3 | mapdlss.u | |- U = ( ( DVecH ` K ) ` W ) |
|
4 | mapdlss.s | |- S = ( LSubSp ` U ) |
|
5 | mapdlss.c | |- C = ( ( LCDual ` K ) ` W ) |
|
6 | mapdlss.t | |- T = ( LSubSp ` C ) |
|
7 | mapdlss.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
8 | mapdlss.r | |- ( ph -> R e. S ) |
|
9 | 1 2 3 4 7 8 | mapdcl | |- ( ph -> ( M ` R ) e. ran M ) |
10 | 1 2 5 6 7 | mapdrn2 | |- ( ph -> ran M = T ) |
11 | 9 10 | eleqtrd | |- ( ph -> ( M ` R ) e. T ) |