| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdcnvcl.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdcnvcl.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdcnvcl.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdcnvcl.s |
|- S = ( LSubSp ` U ) |
| 5 |
|
mapdcnvcl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
mapdcl.x |
|- ( ph -> X e. S ) |
| 7 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 8 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 9 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
| 10 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
| 11 |
|
eqid |
|- ( LSubSp ` ( LDual ` U ) ) = ( LSubSp ` ( LDual ` U ) ) |
| 12 |
|
eqid |
|- { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } = { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } |
| 13 |
1 7 2 3 4 8 9 10 11 12 5
|
mapd1o |
|- ( ph -> M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) ) |
| 14 |
|
f1ofn |
|- ( M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) -> M Fn S ) |
| 15 |
13 14
|
syl |
|- ( ph -> M Fn S ) |
| 16 |
|
dffn3 |
|- ( M Fn S <-> M : S --> ran M ) |
| 17 |
15 16
|
sylib |
|- ( ph -> M : S --> ran M ) |
| 18 |
17 6
|
ffvelcdmd |
|- ( ph -> ( M ` X ) e. ran M ) |