Metamath Proof Explorer


Theorem mapdcl

Description: Closure the value of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdcnvcl.h
|- H = ( LHyp ` K )
mapdcnvcl.m
|- M = ( ( mapd ` K ) ` W )
mapdcnvcl.u
|- U = ( ( DVecH ` K ) ` W )
mapdcnvcl.s
|- S = ( LSubSp ` U )
mapdcnvcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdcl.x
|- ( ph -> X e. S )
Assertion mapdcl
|- ( ph -> ( M ` X ) e. ran M )

Proof

Step Hyp Ref Expression
1 mapdcnvcl.h
 |-  H = ( LHyp ` K )
2 mapdcnvcl.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdcnvcl.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdcnvcl.s
 |-  S = ( LSubSp ` U )
5 mapdcnvcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 mapdcl.x
 |-  ( ph -> X e. S )
7 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
8 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
9 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
10 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
11 eqid
 |-  ( LSubSp ` ( LDual ` U ) ) = ( LSubSp ` ( LDual ` U ) )
12 eqid
 |-  { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } = { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) }
13 1 7 2 3 4 8 9 10 11 12 5 mapd1o
 |-  ( ph -> M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) )
14 f1ofn
 |-  ( M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) -> M Fn S )
15 13 14 syl
 |-  ( ph -> M Fn S )
16 dffn3
 |-  ( M Fn S <-> M : S --> ran M )
17 15 16 sylib
 |-  ( ph -> M : S --> ran M )
18 17 6 ffvelrnd
 |-  ( ph -> ( M ` X ) e. ran M )