Metamath Proof Explorer


Theorem mapdcnvordN

Description: Ordering property of the converse of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdcnvord.h H = LHyp K
mapdcnvord.m M = mapd K W
mapdcnvord.k φ K HL W H
mapdcnvord.x φ X ran M
mapdcnvord.y φ Y ran M
Assertion mapdcnvordN φ M -1 X M -1 Y X Y

Proof

Step Hyp Ref Expression
1 mapdcnvord.h H = LHyp K
2 mapdcnvord.m M = mapd K W
3 mapdcnvord.k φ K HL W H
4 mapdcnvord.x φ X ran M
5 mapdcnvord.y φ Y ran M
6 eqid DVecH K W = DVecH K W
7 eqid LSubSp DVecH K W = LSubSp DVecH K W
8 1 2 6 7 3 4 mapdcnvcl φ M -1 X LSubSp DVecH K W
9 1 2 6 7 3 5 mapdcnvcl φ M -1 Y LSubSp DVecH K W
10 1 6 7 2 3 8 9 mapdord φ M M -1 X M M -1 Y M -1 X M -1 Y
11 1 2 3 4 mapdcnvid2 φ M M -1 X = X
12 1 2 3 5 mapdcnvid2 φ M M -1 Y = Y
13 11 12 sseq12d φ M M -1 X M M -1 Y X Y
14 10 13 bitr3d φ M -1 X M -1 Y X Y