| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdcnvord.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdcnvord.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdcnvord.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 4 |  | mapdcnvord.x |  |-  ( ph -> X e. ran M ) | 
						
							| 5 |  | mapdcnvord.y |  |-  ( ph -> Y e. ran M ) | 
						
							| 6 |  | eqid |  |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) | 
						
							| 7 |  | eqid |  |-  ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 8 | 1 2 6 7 3 4 | mapdcnvcl |  |-  ( ph -> ( `' M ` X ) e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 9 | 1 2 6 7 3 5 | mapdcnvcl |  |-  ( ph -> ( `' M ` Y ) e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 10 | 1 6 7 2 3 8 9 | mapdord |  |-  ( ph -> ( ( M ` ( `' M ` X ) ) C_ ( M ` ( `' M ` Y ) ) <-> ( `' M ` X ) C_ ( `' M ` Y ) ) ) | 
						
							| 11 | 1 2 3 4 | mapdcnvid2 |  |-  ( ph -> ( M ` ( `' M ` X ) ) = X ) | 
						
							| 12 | 1 2 3 5 | mapdcnvid2 |  |-  ( ph -> ( M ` ( `' M ` Y ) ) = Y ) | 
						
							| 13 | 11 12 | sseq12d |  |-  ( ph -> ( ( M ` ( `' M ` X ) ) C_ ( M ` ( `' M ` Y ) ) <-> X C_ Y ) ) | 
						
							| 14 | 10 13 | bitr3d |  |-  ( ph -> ( ( `' M ` X ) C_ ( `' M ` Y ) <-> X C_ Y ) ) |