Metamath Proof Explorer


Theorem mapdcnvordN

Description: Ordering property of the converse of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdcnvord.h
|- H = ( LHyp ` K )
mapdcnvord.m
|- M = ( ( mapd ` K ) ` W )
mapdcnvord.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdcnvord.x
|- ( ph -> X e. ran M )
mapdcnvord.y
|- ( ph -> Y e. ran M )
Assertion mapdcnvordN
|- ( ph -> ( ( `' M ` X ) C_ ( `' M ` Y ) <-> X C_ Y ) )

Proof

Step Hyp Ref Expression
1 mapdcnvord.h
 |-  H = ( LHyp ` K )
2 mapdcnvord.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdcnvord.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
4 mapdcnvord.x
 |-  ( ph -> X e. ran M )
5 mapdcnvord.y
 |-  ( ph -> Y e. ran M )
6 eqid
 |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W )
7 eqid
 |-  ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) )
8 1 2 6 7 3 4 mapdcnvcl
 |-  ( ph -> ( `' M ` X ) e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) )
9 1 2 6 7 3 5 mapdcnvcl
 |-  ( ph -> ( `' M ` Y ) e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) )
10 1 6 7 2 3 8 9 mapdord
 |-  ( ph -> ( ( M ` ( `' M ` X ) ) C_ ( M ` ( `' M ` Y ) ) <-> ( `' M ` X ) C_ ( `' M ` Y ) ) )
11 1 2 3 4 mapdcnvid2
 |-  ( ph -> ( M ` ( `' M ` X ) ) = X )
12 1 2 3 5 mapdcnvid2
 |-  ( ph -> ( M ` ( `' M ` Y ) ) = Y )
13 11 12 sseq12d
 |-  ( ph -> ( ( M ` ( `' M ` X ) ) C_ ( M ` ( `' M ` Y ) ) <-> X C_ Y ) )
14 10 13 bitr3d
 |-  ( ph -> ( ( `' M ` X ) C_ ( `' M ` Y ) <-> X C_ Y ) )