Step |
Hyp |
Ref |
Expression |
1 |
|
mapdcnvord.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdcnvord.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdcnvord.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
4 |
|
mapdcnvord.x |
|- ( ph -> X e. ran M ) |
5 |
|
mapdcnvord.y |
|- ( ph -> Y e. ran M ) |
6 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
7 |
|
eqid |
|- ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) ) |
8 |
1 2 6 7 3 4
|
mapdcnvcl |
|- ( ph -> ( `' M ` X ) e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) |
9 |
1 2 6 7 3 5
|
mapdcnvcl |
|- ( ph -> ( `' M ` Y ) e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) |
10 |
1 6 7 2 3 8 9
|
mapdord |
|- ( ph -> ( ( M ` ( `' M ` X ) ) C_ ( M ` ( `' M ` Y ) ) <-> ( `' M ` X ) C_ ( `' M ` Y ) ) ) |
11 |
1 2 3 4
|
mapdcnvid2 |
|- ( ph -> ( M ` ( `' M ` X ) ) = X ) |
12 |
1 2 3 5
|
mapdcnvid2 |
|- ( ph -> ( M ` ( `' M ` Y ) ) = Y ) |
13 |
11 12
|
sseq12d |
|- ( ph -> ( ( M ` ( `' M ` X ) ) C_ ( M ` ( `' M ` Y ) ) <-> X C_ Y ) ) |
14 |
10 13
|
bitr3d |
|- ( ph -> ( ( `' M ` X ) C_ ( `' M ` Y ) <-> X C_ Y ) ) |