Metamath Proof Explorer


Theorem mapdcnv11N

Description: The converse of the map defined by df-mapd is one-to-one. (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdcnvord.h
|- H = ( LHyp ` K )
mapdcnvord.m
|- M = ( ( mapd ` K ) ` W )
mapdcnvord.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdcnvord.x
|- ( ph -> X e. ran M )
mapdcnvord.y
|- ( ph -> Y e. ran M )
Assertion mapdcnv11N
|- ( ph -> ( ( `' M ` X ) = ( `' M ` Y ) <-> X = Y ) )

Proof

Step Hyp Ref Expression
1 mapdcnvord.h
 |-  H = ( LHyp ` K )
2 mapdcnvord.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdcnvord.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
4 mapdcnvord.x
 |-  ( ph -> X e. ran M )
5 mapdcnvord.y
 |-  ( ph -> Y e. ran M )
6 1 2 3 4 5 mapdcnvordN
 |-  ( ph -> ( ( `' M ` X ) C_ ( `' M ` Y ) <-> X C_ Y ) )
7 1 2 3 5 4 mapdcnvordN
 |-  ( ph -> ( ( `' M ` Y ) C_ ( `' M ` X ) <-> Y C_ X ) )
8 6 7 anbi12d
 |-  ( ph -> ( ( ( `' M ` X ) C_ ( `' M ` Y ) /\ ( `' M ` Y ) C_ ( `' M ` X ) ) <-> ( X C_ Y /\ Y C_ X ) ) )
9 eqss
 |-  ( ( `' M ` X ) = ( `' M ` Y ) <-> ( ( `' M ` X ) C_ ( `' M ` Y ) /\ ( `' M ` Y ) C_ ( `' M ` X ) ) )
10 eqss
 |-  ( X = Y <-> ( X C_ Y /\ Y C_ X ) )
11 8 9 10 3bitr4g
 |-  ( ph -> ( ( `' M ` X ) = ( `' M ` Y ) <-> X = Y ) )