| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdcnvord.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdcnvord.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdcnvord.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 4 |  | mapdcnvord.x |  |-  ( ph -> X e. ran M ) | 
						
							| 5 |  | mapdcnvord.y |  |-  ( ph -> Y e. ran M ) | 
						
							| 6 | 1 2 3 4 5 | mapdcnvordN |  |-  ( ph -> ( ( `' M ` X ) C_ ( `' M ` Y ) <-> X C_ Y ) ) | 
						
							| 7 | 1 2 3 5 4 | mapdcnvordN |  |-  ( ph -> ( ( `' M ` Y ) C_ ( `' M ` X ) <-> Y C_ X ) ) | 
						
							| 8 | 6 7 | anbi12d |  |-  ( ph -> ( ( ( `' M ` X ) C_ ( `' M ` Y ) /\ ( `' M ` Y ) C_ ( `' M ` X ) ) <-> ( X C_ Y /\ Y C_ X ) ) ) | 
						
							| 9 |  | eqss |  |-  ( ( `' M ` X ) = ( `' M ` Y ) <-> ( ( `' M ` X ) C_ ( `' M ` Y ) /\ ( `' M ` Y ) C_ ( `' M ` X ) ) ) | 
						
							| 10 |  | eqss |  |-  ( X = Y <-> ( X C_ Y /\ Y C_ X ) ) | 
						
							| 11 | 8 9 10 | 3bitr4g |  |-  ( ph -> ( ( `' M ` X ) = ( `' M ` Y ) <-> X = Y ) ) |