Metamath Proof Explorer


Theorem mapdcnv11N

Description: The converse of the map defined by df-mapd is one-to-one. (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdcnvord.h H = LHyp K
mapdcnvord.m M = mapd K W
mapdcnvord.k φ K HL W H
mapdcnvord.x φ X ran M
mapdcnvord.y φ Y ran M
Assertion mapdcnv11N φ M -1 X = M -1 Y X = Y

Proof

Step Hyp Ref Expression
1 mapdcnvord.h H = LHyp K
2 mapdcnvord.m M = mapd K W
3 mapdcnvord.k φ K HL W H
4 mapdcnvord.x φ X ran M
5 mapdcnvord.y φ Y ran M
6 1 2 3 4 5 mapdcnvordN φ M -1 X M -1 Y X Y
7 1 2 3 5 4 mapdcnvordN φ M -1 Y M -1 X Y X
8 6 7 anbi12d φ M -1 X M -1 Y M -1 Y M -1 X X Y Y X
9 eqss M -1 X = M -1 Y M -1 X M -1 Y M -1 Y M -1 X
10 eqss X = Y X Y Y X
11 8 9 10 3bitr4g φ M -1 X = M -1 Y X = Y