Metamath Proof Explorer


Theorem mapdcnv11N

Description: The converse of the map defined by df-mapd is one-to-one. (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdcnvord.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdcnvord.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdcnvord.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdcnvord.x ( 𝜑𝑋 ∈ ran 𝑀 )
mapdcnvord.y ( 𝜑𝑌 ∈ ran 𝑀 )
Assertion mapdcnv11N ( 𝜑 → ( ( 𝑀𝑋 ) = ( 𝑀𝑌 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 mapdcnvord.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdcnvord.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdcnvord.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 mapdcnvord.x ( 𝜑𝑋 ∈ ran 𝑀 )
5 mapdcnvord.y ( 𝜑𝑌 ∈ ran 𝑀 )
6 1 2 3 4 5 mapdcnvordN ( 𝜑 → ( ( 𝑀𝑋 ) ⊆ ( 𝑀𝑌 ) ↔ 𝑋𝑌 ) )
7 1 2 3 5 4 mapdcnvordN ( 𝜑 → ( ( 𝑀𝑌 ) ⊆ ( 𝑀𝑋 ) ↔ 𝑌𝑋 ) )
8 6 7 anbi12d ( 𝜑 → ( ( ( 𝑀𝑋 ) ⊆ ( 𝑀𝑌 ) ∧ ( 𝑀𝑌 ) ⊆ ( 𝑀𝑋 ) ) ↔ ( 𝑋𝑌𝑌𝑋 ) ) )
9 eqss ( ( 𝑀𝑋 ) = ( 𝑀𝑌 ) ↔ ( ( 𝑀𝑋 ) ⊆ ( 𝑀𝑌 ) ∧ ( 𝑀𝑌 ) ⊆ ( 𝑀𝑋 ) ) )
10 eqss ( 𝑋 = 𝑌 ↔ ( 𝑋𝑌𝑌𝑋 ) )
11 8 9 10 3bitr4g ( 𝜑 → ( ( 𝑀𝑋 ) = ( 𝑀𝑌 ) ↔ 𝑋 = 𝑌 ) )