| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdcnvord.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdcnvord.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdcnvord.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 4 |
|
mapdcnvord.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑀 ) |
| 5 |
|
mapdcnvord.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝑀 ) |
| 6 |
1 2 3 4 5
|
mapdcnvordN |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ 𝑋 ) ⊆ ( ◡ 𝑀 ‘ 𝑌 ) ↔ 𝑋 ⊆ 𝑌 ) ) |
| 7 |
1 2 3 5 4
|
mapdcnvordN |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ 𝑌 ) ⊆ ( ◡ 𝑀 ‘ 𝑋 ) ↔ 𝑌 ⊆ 𝑋 ) ) |
| 8 |
6 7
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ◡ 𝑀 ‘ 𝑋 ) ⊆ ( ◡ 𝑀 ‘ 𝑌 ) ∧ ( ◡ 𝑀 ‘ 𝑌 ) ⊆ ( ◡ 𝑀 ‘ 𝑋 ) ) ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) ) ) |
| 9 |
|
eqss |
⊢ ( ( ◡ 𝑀 ‘ 𝑋 ) = ( ◡ 𝑀 ‘ 𝑌 ) ↔ ( ( ◡ 𝑀 ‘ 𝑋 ) ⊆ ( ◡ 𝑀 ‘ 𝑌 ) ∧ ( ◡ 𝑀 ‘ 𝑌 ) ⊆ ( ◡ 𝑀 ‘ 𝑋 ) ) ) |
| 10 |
|
eqss |
⊢ ( 𝑋 = 𝑌 ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) ) |
| 11 |
8 9 10
|
3bitr4g |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ 𝑋 ) = ( ◡ 𝑀 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |