| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdcv.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdcv.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdcv.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdcv.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 5 |  | mapdcv.c | ⊢ 𝐶  =  (  ⋖L  ‘ 𝑈 ) | 
						
							| 6 |  | mapdcv.d | ⊢ 𝐷  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | mapdcv.e | ⊢ 𝐸  =  (  ⋖L  ‘ 𝐷 ) | 
						
							| 8 |  | mapdcv.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | mapdcv.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑆 ) | 
						
							| 10 |  | mapdcv.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑆 ) | 
						
							| 11 | 1 2 3 4 8 9 10 | mapdsord | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑌 )  ↔  𝑋  ⊊  𝑌 ) ) | 
						
							| 12 |  | eqid | ⊢ ( LSubSp ‘ 𝐷 )  =  ( LSubSp ‘ 𝐷 ) | 
						
							| 13 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑆 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑆 )  →  𝑣  ∈  𝑆 ) | 
						
							| 15 | 1 2 3 4 6 12 13 14 | mapdcl2 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑆 )  →  ( 𝑀 ‘ 𝑣 )  ∈  ( LSubSp ‘ 𝐷 ) ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( LSubSp ‘ 𝐷 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 | 1 2 6 12 8 | mapdrn2 | ⊢ ( 𝜑  →  ran  𝑀  =  ( LSubSp ‘ 𝐷 ) ) | 
						
							| 18 | 17 | eleq2d | ⊢ ( 𝜑  →  ( 𝑓  ∈  ran  𝑀  ↔  𝑓  ∈  ( LSubSp ‘ 𝐷 ) ) ) | 
						
							| 19 | 18 | biimpar | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( LSubSp ‘ 𝐷 ) )  →  𝑓  ∈  ran  𝑀 ) | 
						
							| 20 | 1 2 3 4 16 19 | mapdcnvcl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( LSubSp ‘ 𝐷 ) )  →  ( ◡ 𝑀 ‘ 𝑓 )  ∈  𝑆 ) | 
						
							| 21 | 1 2 16 19 | mapdcnvid2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( LSubSp ‘ 𝐷 ) )  →  ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑓 ) )  =  𝑓 ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( LSubSp ‘ 𝐷 ) )  →  𝑓  =  ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑣  =  ( ◡ 𝑀 ‘ 𝑓 )  →  ( 𝑀 ‘ 𝑣 )  =  ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 24 | 23 | rspceeqv | ⊢ ( ( ( ◡ 𝑀 ‘ 𝑓 )  ∈  𝑆  ∧  𝑓  =  ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑓 ) ) )  →  ∃ 𝑣  ∈  𝑆 𝑓  =  ( 𝑀 ‘ 𝑣 ) ) | 
						
							| 25 | 20 22 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( LSubSp ‘ 𝐷 ) )  →  ∃ 𝑣  ∈  𝑆 𝑓  =  ( 𝑀 ‘ 𝑣 ) ) | 
						
							| 26 |  | psseq2 | ⊢ ( 𝑓  =  ( 𝑀 ‘ 𝑣 )  →  ( ( 𝑀 ‘ 𝑋 )  ⊊  𝑓  ↔  ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑣 ) ) ) | 
						
							| 27 |  | psseq1 | ⊢ ( 𝑓  =  ( 𝑀 ‘ 𝑣 )  →  ( 𝑓  ⊊  ( 𝑀 ‘ 𝑌 )  ↔  ( 𝑀 ‘ 𝑣 )  ⊊  ( 𝑀 ‘ 𝑌 ) ) ) | 
						
							| 28 | 26 27 | anbi12d | ⊢ ( 𝑓  =  ( 𝑀 ‘ 𝑣 )  →  ( ( ( 𝑀 ‘ 𝑋 )  ⊊  𝑓  ∧  𝑓  ⊊  ( 𝑀 ‘ 𝑌 ) )  ↔  ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑣 )  ∧  ( 𝑀 ‘ 𝑣 )  ⊊  ( 𝑀 ‘ 𝑌 ) ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  =  ( 𝑀 ‘ 𝑣 ) )  →  ( ( ( 𝑀 ‘ 𝑋 )  ⊊  𝑓  ∧  𝑓  ⊊  ( 𝑀 ‘ 𝑌 ) )  ↔  ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑣 )  ∧  ( 𝑀 ‘ 𝑣 )  ⊊  ( 𝑀 ‘ 𝑌 ) ) ) ) | 
						
							| 30 | 15 25 29 | rexxfrd | ⊢ ( 𝜑  →  ( ∃ 𝑓  ∈  ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 )  ⊊  𝑓  ∧  𝑓  ⊊  ( 𝑀 ‘ 𝑌 ) )  ↔  ∃ 𝑣  ∈  𝑆 ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑣 )  ∧  ( 𝑀 ‘ 𝑣 )  ⊊  ( 𝑀 ‘ 𝑌 ) ) ) ) | 
						
							| 31 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑆 )  →  𝑋  ∈  𝑆 ) | 
						
							| 32 | 1 2 3 4 13 31 14 | mapdsord | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑆 )  →  ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑣 )  ↔  𝑋  ⊊  𝑣 ) ) | 
						
							| 33 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑆 )  →  𝑌  ∈  𝑆 ) | 
						
							| 34 | 1 2 3 4 13 14 33 | mapdsord | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑆 )  →  ( ( 𝑀 ‘ 𝑣 )  ⊊  ( 𝑀 ‘ 𝑌 )  ↔  𝑣  ⊊  𝑌 ) ) | 
						
							| 35 | 32 34 | anbi12d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑆 )  →  ( ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑣 )  ∧  ( 𝑀 ‘ 𝑣 )  ⊊  ( 𝑀 ‘ 𝑌 ) )  ↔  ( 𝑋  ⊊  𝑣  ∧  𝑣  ⊊  𝑌 ) ) ) | 
						
							| 36 | 35 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑣  ∈  𝑆 ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑣 )  ∧  ( 𝑀 ‘ 𝑣 )  ⊊  ( 𝑀 ‘ 𝑌 ) )  ↔  ∃ 𝑣  ∈  𝑆 ( 𝑋  ⊊  𝑣  ∧  𝑣  ⊊  𝑌 ) ) ) | 
						
							| 37 | 30 36 | bitrd | ⊢ ( 𝜑  →  ( ∃ 𝑓  ∈  ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 )  ⊊  𝑓  ∧  𝑓  ⊊  ( 𝑀 ‘ 𝑌 ) )  ↔  ∃ 𝑣  ∈  𝑆 ( 𝑋  ⊊  𝑣  ∧  𝑣  ⊊  𝑌 ) ) ) | 
						
							| 38 | 37 | notbid | ⊢ ( 𝜑  →  ( ¬  ∃ 𝑓  ∈  ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 )  ⊊  𝑓  ∧  𝑓  ⊊  ( 𝑀 ‘ 𝑌 ) )  ↔  ¬  ∃ 𝑣  ∈  𝑆 ( 𝑋  ⊊  𝑣  ∧  𝑣  ⊊  𝑌 ) ) ) | 
						
							| 39 | 11 38 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑌 )  ∧  ¬  ∃ 𝑓  ∈  ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 )  ⊊  𝑓  ∧  𝑓  ⊊  ( 𝑀 ‘ 𝑌 ) ) )  ↔  ( 𝑋  ⊊  𝑌  ∧  ¬  ∃ 𝑣  ∈  𝑆 ( 𝑋  ⊊  𝑣  ∧  𝑣  ⊊  𝑌 ) ) ) ) | 
						
							| 40 | 1 6 8 | lcdlmod | ⊢ ( 𝜑  →  𝐷  ∈  LMod ) | 
						
							| 41 | 1 2 3 4 6 12 8 9 | mapdcl2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑋 )  ∈  ( LSubSp ‘ 𝐷 ) ) | 
						
							| 42 | 1 2 3 4 6 12 8 10 | mapdcl2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑌 )  ∈  ( LSubSp ‘ 𝐷 ) ) | 
						
							| 43 | 12 7 40 41 42 | lcvbr | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑋 ) 𝐸 ( 𝑀 ‘ 𝑌 )  ↔  ( ( 𝑀 ‘ 𝑋 )  ⊊  ( 𝑀 ‘ 𝑌 )  ∧  ¬  ∃ 𝑓  ∈  ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 )  ⊊  𝑓  ∧  𝑓  ⊊  ( 𝑀 ‘ 𝑌 ) ) ) ) ) | 
						
							| 44 | 1 3 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 45 | 4 5 44 9 10 | lcvbr | ⊢ ( 𝜑  →  ( 𝑋 𝐶 𝑌  ↔  ( 𝑋  ⊊  𝑌  ∧  ¬  ∃ 𝑣  ∈  𝑆 ( 𝑋  ⊊  𝑣  ∧  𝑣  ⊊  𝑌 ) ) ) ) | 
						
							| 46 | 39 43 45 | 3bitr4rd | ⊢ ( 𝜑  →  ( 𝑋 𝐶 𝑌  ↔  ( 𝑀 ‘ 𝑋 ) 𝐸 ( 𝑀 ‘ 𝑌 ) ) ) |