Metamath Proof Explorer


Theorem mapdcv

Description: Covering property of the converse of the map defined by df-mapd . (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses mapdcv.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdcv.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdcv.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdcv.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapdcv.c 𝐶 = ( ⋖L𝑈 )
mapdcv.d 𝐷 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdcv.e 𝐸 = ( ⋖L𝐷 )
mapdcv.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdcv.x ( 𝜑𝑋𝑆 )
mapdcv.y ( 𝜑𝑌𝑆 )
Assertion mapdcv ( 𝜑 → ( 𝑋 𝐶 𝑌 ↔ ( 𝑀𝑋 ) 𝐸 ( 𝑀𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 mapdcv.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdcv.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdcv.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdcv.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 mapdcv.c 𝐶 = ( ⋖L𝑈 )
6 mapdcv.d 𝐷 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 mapdcv.e 𝐸 = ( ⋖L𝐷 )
8 mapdcv.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 mapdcv.x ( 𝜑𝑋𝑆 )
10 mapdcv.y ( 𝜑𝑌𝑆 )
11 1 2 3 4 8 9 10 mapdsord ( 𝜑 → ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑌 ) ↔ 𝑋𝑌 ) )
12 eqid ( LSubSp ‘ 𝐷 ) = ( LSubSp ‘ 𝐷 )
13 8 adantr ( ( 𝜑𝑣𝑆 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simpr ( ( 𝜑𝑣𝑆 ) → 𝑣𝑆 )
15 1 2 3 4 6 12 13 14 mapdcl2 ( ( 𝜑𝑣𝑆 ) → ( 𝑀𝑣 ) ∈ ( LSubSp ‘ 𝐷 ) )
16 8 adantr ( ( 𝜑𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 1 2 6 12 8 mapdrn2 ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐷 ) )
18 17 eleq2d ( 𝜑 → ( 𝑓 ∈ ran 𝑀𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) )
19 18 biimpar ( ( 𝜑𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → 𝑓 ∈ ran 𝑀 )
20 1 2 3 4 16 19 mapdcnvcl ( ( 𝜑𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → ( 𝑀𝑓 ) ∈ 𝑆 )
21 1 2 16 19 mapdcnvid2 ( ( 𝜑𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → ( 𝑀 ‘ ( 𝑀𝑓 ) ) = 𝑓 )
22 21 eqcomd ( ( 𝜑𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → 𝑓 = ( 𝑀 ‘ ( 𝑀𝑓 ) ) )
23 fveq2 ( 𝑣 = ( 𝑀𝑓 ) → ( 𝑀𝑣 ) = ( 𝑀 ‘ ( 𝑀𝑓 ) ) )
24 23 rspceeqv ( ( ( 𝑀𝑓 ) ∈ 𝑆𝑓 = ( 𝑀 ‘ ( 𝑀𝑓 ) ) ) → ∃ 𝑣𝑆 𝑓 = ( 𝑀𝑣 ) )
25 20 22 24 syl2anc ( ( 𝜑𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → ∃ 𝑣𝑆 𝑓 = ( 𝑀𝑣 ) )
26 psseq2 ( 𝑓 = ( 𝑀𝑣 ) → ( ( 𝑀𝑋 ) ⊊ 𝑓 ↔ ( 𝑀𝑋 ) ⊊ ( 𝑀𝑣 ) ) )
27 psseq1 ( 𝑓 = ( 𝑀𝑣 ) → ( 𝑓 ⊊ ( 𝑀𝑌 ) ↔ ( 𝑀𝑣 ) ⊊ ( 𝑀𝑌 ) ) )
28 26 27 anbi12d ( 𝑓 = ( 𝑀𝑣 ) → ( ( ( 𝑀𝑋 ) ⊊ 𝑓𝑓 ⊊ ( 𝑀𝑌 ) ) ↔ ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑣 ) ∧ ( 𝑀𝑣 ) ⊊ ( 𝑀𝑌 ) ) ) )
29 28 adantl ( ( 𝜑𝑓 = ( 𝑀𝑣 ) ) → ( ( ( 𝑀𝑋 ) ⊊ 𝑓𝑓 ⊊ ( 𝑀𝑌 ) ) ↔ ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑣 ) ∧ ( 𝑀𝑣 ) ⊊ ( 𝑀𝑌 ) ) ) )
30 15 25 29 rexxfrd ( 𝜑 → ( ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀𝑋 ) ⊊ 𝑓𝑓 ⊊ ( 𝑀𝑌 ) ) ↔ ∃ 𝑣𝑆 ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑣 ) ∧ ( 𝑀𝑣 ) ⊊ ( 𝑀𝑌 ) ) ) )
31 9 adantr ( ( 𝜑𝑣𝑆 ) → 𝑋𝑆 )
32 1 2 3 4 13 31 14 mapdsord ( ( 𝜑𝑣𝑆 ) → ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑣 ) ↔ 𝑋𝑣 ) )
33 10 adantr ( ( 𝜑𝑣𝑆 ) → 𝑌𝑆 )
34 1 2 3 4 13 14 33 mapdsord ( ( 𝜑𝑣𝑆 ) → ( ( 𝑀𝑣 ) ⊊ ( 𝑀𝑌 ) ↔ 𝑣𝑌 ) )
35 32 34 anbi12d ( ( 𝜑𝑣𝑆 ) → ( ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑣 ) ∧ ( 𝑀𝑣 ) ⊊ ( 𝑀𝑌 ) ) ↔ ( 𝑋𝑣𝑣𝑌 ) ) )
36 35 rexbidva ( 𝜑 → ( ∃ 𝑣𝑆 ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑣 ) ∧ ( 𝑀𝑣 ) ⊊ ( 𝑀𝑌 ) ) ↔ ∃ 𝑣𝑆 ( 𝑋𝑣𝑣𝑌 ) ) )
37 30 36 bitrd ( 𝜑 → ( ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀𝑋 ) ⊊ 𝑓𝑓 ⊊ ( 𝑀𝑌 ) ) ↔ ∃ 𝑣𝑆 ( 𝑋𝑣𝑣𝑌 ) ) )
38 37 notbid ( 𝜑 → ( ¬ ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀𝑋 ) ⊊ 𝑓𝑓 ⊊ ( 𝑀𝑌 ) ) ↔ ¬ ∃ 𝑣𝑆 ( 𝑋𝑣𝑣𝑌 ) ) )
39 11 38 anbi12d ( 𝜑 → ( ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑌 ) ∧ ¬ ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀𝑋 ) ⊊ 𝑓𝑓 ⊊ ( 𝑀𝑌 ) ) ) ↔ ( 𝑋𝑌 ∧ ¬ ∃ 𝑣𝑆 ( 𝑋𝑣𝑣𝑌 ) ) ) )
40 1 6 8 lcdlmod ( 𝜑𝐷 ∈ LMod )
41 1 2 3 4 6 12 8 9 mapdcl2 ( 𝜑 → ( 𝑀𝑋 ) ∈ ( LSubSp ‘ 𝐷 ) )
42 1 2 3 4 6 12 8 10 mapdcl2 ( 𝜑 → ( 𝑀𝑌 ) ∈ ( LSubSp ‘ 𝐷 ) )
43 12 7 40 41 42 lcvbr ( 𝜑 → ( ( 𝑀𝑋 ) 𝐸 ( 𝑀𝑌 ) ↔ ( ( 𝑀𝑋 ) ⊊ ( 𝑀𝑌 ) ∧ ¬ ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀𝑋 ) ⊊ 𝑓𝑓 ⊊ ( 𝑀𝑌 ) ) ) ) )
44 1 3 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
45 4 5 44 9 10 lcvbr ( 𝜑 → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋𝑌 ∧ ¬ ∃ 𝑣𝑆 ( 𝑋𝑣𝑣𝑌 ) ) ) )
46 39 43 45 3bitr4rd ( 𝜑 → ( 𝑋 𝐶 𝑌 ↔ ( 𝑀𝑋 ) 𝐸 ( 𝑀𝑌 ) ) )