Step |
Hyp |
Ref |
Expression |
1 |
|
mapdcv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdcv.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdcv.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdcv.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
mapdcv.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑈 ) |
6 |
|
mapdcv.d |
⊢ 𝐷 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
mapdcv.e |
⊢ 𝐸 = ( ⋖L ‘ 𝐷 ) |
8 |
|
mapdcv.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
mapdcv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
10 |
|
mapdcv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
11 |
1 2 3 4 8 9 10
|
mapdsord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑌 ) ↔ 𝑋 ⊊ 𝑌 ) ) |
12 |
|
eqid |
⊢ ( LSubSp ‘ 𝐷 ) = ( LSubSp ‘ 𝐷 ) |
13 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → 𝑣 ∈ 𝑆 ) |
15 |
1 2 3 4 6 12 13 14
|
mapdcl2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑀 ‘ 𝑣 ) ∈ ( LSubSp ‘ 𝐷 ) ) |
16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
1 2 6 12 8
|
mapdrn2 |
⊢ ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐷 ) ) |
18 |
17
|
eleq2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ran 𝑀 ↔ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → 𝑓 ∈ ran 𝑀 ) |
20 |
1 2 3 4 16 19
|
mapdcnvcl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → ( ◡ 𝑀 ‘ 𝑓 ) ∈ 𝑆 ) |
21 |
1 2 16 19
|
mapdcnvid2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑓 ) ) = 𝑓 ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → 𝑓 = ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑓 ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑣 = ( ◡ 𝑀 ‘ 𝑓 ) → ( 𝑀 ‘ 𝑣 ) = ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑓 ) ) ) |
24 |
23
|
rspceeqv |
⊢ ( ( ( ◡ 𝑀 ‘ 𝑓 ) ∈ 𝑆 ∧ 𝑓 = ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑓 ) ) ) → ∃ 𝑣 ∈ 𝑆 𝑓 = ( 𝑀 ‘ 𝑣 ) ) |
25 |
20 22 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ) → ∃ 𝑣 ∈ 𝑆 𝑓 = ( 𝑀 ‘ 𝑣 ) ) |
26 |
|
psseq2 |
⊢ ( 𝑓 = ( 𝑀 ‘ 𝑣 ) → ( ( 𝑀 ‘ 𝑋 ) ⊊ 𝑓 ↔ ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑣 ) ) ) |
27 |
|
psseq1 |
⊢ ( 𝑓 = ( 𝑀 ‘ 𝑣 ) → ( 𝑓 ⊊ ( 𝑀 ‘ 𝑌 ) ↔ ( 𝑀 ‘ 𝑣 ) ⊊ ( 𝑀 ‘ 𝑌 ) ) ) |
28 |
26 27
|
anbi12d |
⊢ ( 𝑓 = ( 𝑀 ‘ 𝑣 ) → ( ( ( 𝑀 ‘ 𝑋 ) ⊊ 𝑓 ∧ 𝑓 ⊊ ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑣 ) ∧ ( 𝑀 ‘ 𝑣 ) ⊊ ( 𝑀 ‘ 𝑌 ) ) ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑀 ‘ 𝑣 ) ) → ( ( ( 𝑀 ‘ 𝑋 ) ⊊ 𝑓 ∧ 𝑓 ⊊ ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑣 ) ∧ ( 𝑀 ‘ 𝑣 ) ⊊ ( 𝑀 ‘ 𝑌 ) ) ) ) |
30 |
15 25 29
|
rexxfrd |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 ) ⊊ 𝑓 ∧ 𝑓 ⊊ ( 𝑀 ‘ 𝑌 ) ) ↔ ∃ 𝑣 ∈ 𝑆 ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑣 ) ∧ ( 𝑀 ‘ 𝑣 ) ⊊ ( 𝑀 ‘ 𝑌 ) ) ) ) |
31 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
32 |
1 2 3 4 13 31 14
|
mapdsord |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑣 ) ↔ 𝑋 ⊊ 𝑣 ) ) |
33 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → 𝑌 ∈ 𝑆 ) |
34 |
1 2 3 4 13 14 33
|
mapdsord |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑀 ‘ 𝑣 ) ⊊ ( 𝑀 ‘ 𝑌 ) ↔ 𝑣 ⊊ 𝑌 ) ) |
35 |
32 34
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑣 ) ∧ ( 𝑀 ‘ 𝑣 ) ⊊ ( 𝑀 ‘ 𝑌 ) ) ↔ ( 𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌 ) ) ) |
36 |
35
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑆 ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑣 ) ∧ ( 𝑀 ‘ 𝑣 ) ⊊ ( 𝑀 ‘ 𝑌 ) ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌 ) ) ) |
37 |
30 36
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 ) ⊊ 𝑓 ∧ 𝑓 ⊊ ( 𝑀 ‘ 𝑌 ) ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌 ) ) ) |
38 |
37
|
notbid |
⊢ ( 𝜑 → ( ¬ ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 ) ⊊ 𝑓 ∧ 𝑓 ⊊ ( 𝑀 ‘ 𝑌 ) ) ↔ ¬ ∃ 𝑣 ∈ 𝑆 ( 𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌 ) ) ) |
39 |
11 38
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑌 ) ∧ ¬ ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 ) ⊊ 𝑓 ∧ 𝑓 ⊊ ( 𝑀 ‘ 𝑌 ) ) ) ↔ ( 𝑋 ⊊ 𝑌 ∧ ¬ ∃ 𝑣 ∈ 𝑆 ( 𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌 ) ) ) ) |
40 |
1 6 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
41 |
1 2 3 4 6 12 8 9
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝐷 ) ) |
42 |
1 2 3 4 6 12 8 10
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝐷 ) ) |
43 |
12 7 40 41 42
|
lcvbr |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) 𝐸 ( 𝑀 ‘ 𝑌 ) ↔ ( ( 𝑀 ‘ 𝑋 ) ⊊ ( 𝑀 ‘ 𝑌 ) ∧ ¬ ∃ 𝑓 ∈ ( LSubSp ‘ 𝐷 ) ( ( 𝑀 ‘ 𝑋 ) ⊊ 𝑓 ∧ 𝑓 ⊊ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
44 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
45 |
4 5 44 9 10
|
lcvbr |
⊢ ( 𝜑 → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 ⊊ 𝑌 ∧ ¬ ∃ 𝑣 ∈ 𝑆 ( 𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌 ) ) ) ) |
46 |
39 43 45
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝑋 𝐶 𝑌 ↔ ( 𝑀 ‘ 𝑋 ) 𝐸 ( 𝑀 ‘ 𝑌 ) ) ) |