| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdcv.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdcv.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdcv.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdcv.s |  |-  S = ( LSubSp ` U ) | 
						
							| 5 |  | mapdcv.c |  |-  C = ( 
 | 
						
							| 6 |  | mapdcv.d |  |-  D = ( ( LCDual ` K ) ` W ) | 
						
							| 7 |  | mapdcv.e |  |-  E = ( 
 | 
						
							| 8 |  | mapdcv.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | mapdcv.x |  |-  ( ph -> X e. S ) | 
						
							| 10 |  | mapdcv.y |  |-  ( ph -> Y e. S ) | 
						
							| 11 | 1 2 3 4 8 9 10 | mapdsord |  |-  ( ph -> ( ( M ` X ) C. ( M ` Y ) <-> X C. Y ) ) | 
						
							| 12 |  | eqid |  |-  ( LSubSp ` D ) = ( LSubSp ` D ) | 
						
							| 13 | 8 | adantr |  |-  ( ( ph /\ v e. S ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ v e. S ) -> v e. S ) | 
						
							| 15 | 1 2 3 4 6 12 13 14 | mapdcl2 |  |-  ( ( ph /\ v e. S ) -> ( M ` v ) e. ( LSubSp ` D ) ) | 
						
							| 16 | 8 | adantr |  |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 | 1 2 6 12 8 | mapdrn2 |  |-  ( ph -> ran M = ( LSubSp ` D ) ) | 
						
							| 18 | 17 | eleq2d |  |-  ( ph -> ( f e. ran M <-> f e. ( LSubSp ` D ) ) ) | 
						
							| 19 | 18 | biimpar |  |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> f e. ran M ) | 
						
							| 20 | 1 2 3 4 16 19 | mapdcnvcl |  |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( `' M ` f ) e. S ) | 
						
							| 21 | 1 2 16 19 | mapdcnvid2 |  |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( M ` ( `' M ` f ) ) = f ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> f = ( M ` ( `' M ` f ) ) ) | 
						
							| 23 |  | fveq2 |  |-  ( v = ( `' M ` f ) -> ( M ` v ) = ( M ` ( `' M ` f ) ) ) | 
						
							| 24 | 23 | rspceeqv |  |-  ( ( ( `' M ` f ) e. S /\ f = ( M ` ( `' M ` f ) ) ) -> E. v e. S f = ( M ` v ) ) | 
						
							| 25 | 20 22 24 | syl2anc |  |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> E. v e. S f = ( M ` v ) ) | 
						
							| 26 |  | psseq2 |  |-  ( f = ( M ` v ) -> ( ( M ` X ) C. f <-> ( M ` X ) C. ( M ` v ) ) ) | 
						
							| 27 |  | psseq1 |  |-  ( f = ( M ` v ) -> ( f C. ( M ` Y ) <-> ( M ` v ) C. ( M ` Y ) ) ) | 
						
							| 28 | 26 27 | anbi12d |  |-  ( f = ( M ` v ) -> ( ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ f = ( M ` v ) ) -> ( ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) ) | 
						
							| 30 | 15 25 29 | rexxfrd |  |-  ( ph -> ( E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> E. v e. S ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) ) | 
						
							| 31 | 9 | adantr |  |-  ( ( ph /\ v e. S ) -> X e. S ) | 
						
							| 32 | 1 2 3 4 13 31 14 | mapdsord |  |-  ( ( ph /\ v e. S ) -> ( ( M ` X ) C. ( M ` v ) <-> X C. v ) ) | 
						
							| 33 | 10 | adantr |  |-  ( ( ph /\ v e. S ) -> Y e. S ) | 
						
							| 34 | 1 2 3 4 13 14 33 | mapdsord |  |-  ( ( ph /\ v e. S ) -> ( ( M ` v ) C. ( M ` Y ) <-> v C. Y ) ) | 
						
							| 35 | 32 34 | anbi12d |  |-  ( ( ph /\ v e. S ) -> ( ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) <-> ( X C. v /\ v C. Y ) ) ) | 
						
							| 36 | 35 | rexbidva |  |-  ( ph -> ( E. v e. S ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) <-> E. v e. S ( X C. v /\ v C. Y ) ) ) | 
						
							| 37 | 30 36 | bitrd |  |-  ( ph -> ( E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> E. v e. S ( X C. v /\ v C. Y ) ) ) | 
						
							| 38 | 37 | notbid |  |-  ( ph -> ( -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> -. E. v e. S ( X C. v /\ v C. Y ) ) ) | 
						
							| 39 | 11 38 | anbi12d |  |-  ( ph -> ( ( ( M ` X ) C. ( M ` Y ) /\ -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) ) <-> ( X C. Y /\ -. E. v e. S ( X C. v /\ v C. Y ) ) ) ) | 
						
							| 40 | 1 6 8 | lcdlmod |  |-  ( ph -> D e. LMod ) | 
						
							| 41 | 1 2 3 4 6 12 8 9 | mapdcl2 |  |-  ( ph -> ( M ` X ) e. ( LSubSp ` D ) ) | 
						
							| 42 | 1 2 3 4 6 12 8 10 | mapdcl2 |  |-  ( ph -> ( M ` Y ) e. ( LSubSp ` D ) ) | 
						
							| 43 | 12 7 40 41 42 | lcvbr |  |-  ( ph -> ( ( M ` X ) E ( M ` Y ) <-> ( ( M ` X ) C. ( M ` Y ) /\ -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) ) ) ) | 
						
							| 44 | 1 3 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 45 | 4 5 44 9 10 | lcvbr |  |-  ( ph -> ( X C Y <-> ( X C. Y /\ -. E. v e. S ( X C. v /\ v C. Y ) ) ) ) | 
						
							| 46 | 39 43 45 | 3bitr4rd |  |-  ( ph -> ( X C Y <-> ( M ` X ) E ( M ` Y ) ) ) |