| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdcv.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdcv.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdcv.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdcv.s |
|- S = ( LSubSp ` U ) |
| 5 |
|
mapdcv.c |
|- C = (
|
| 6 |
|
mapdcv.d |
|- D = ( ( LCDual ` K ) ` W ) |
| 7 |
|
mapdcv.e |
|- E = (
|
| 8 |
|
mapdcv.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
mapdcv.x |
|- ( ph -> X e. S ) |
| 10 |
|
mapdcv.y |
|- ( ph -> Y e. S ) |
| 11 |
1 2 3 4 8 9 10
|
mapdsord |
|- ( ph -> ( ( M ` X ) C. ( M ` Y ) <-> X C. Y ) ) |
| 12 |
|
eqid |
|- ( LSubSp ` D ) = ( LSubSp ` D ) |
| 13 |
8
|
adantr |
|- ( ( ph /\ v e. S ) -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ v e. S ) -> v e. S ) |
| 15 |
1 2 3 4 6 12 13 14
|
mapdcl2 |
|- ( ( ph /\ v e. S ) -> ( M ` v ) e. ( LSubSp ` D ) ) |
| 16 |
8
|
adantr |
|- ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( K e. HL /\ W e. H ) ) |
| 17 |
1 2 6 12 8
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` D ) ) |
| 18 |
17
|
eleq2d |
|- ( ph -> ( f e. ran M <-> f e. ( LSubSp ` D ) ) ) |
| 19 |
18
|
biimpar |
|- ( ( ph /\ f e. ( LSubSp ` D ) ) -> f e. ran M ) |
| 20 |
1 2 3 4 16 19
|
mapdcnvcl |
|- ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( `' M ` f ) e. S ) |
| 21 |
1 2 16 19
|
mapdcnvid2 |
|- ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( M ` ( `' M ` f ) ) = f ) |
| 22 |
21
|
eqcomd |
|- ( ( ph /\ f e. ( LSubSp ` D ) ) -> f = ( M ` ( `' M ` f ) ) ) |
| 23 |
|
fveq2 |
|- ( v = ( `' M ` f ) -> ( M ` v ) = ( M ` ( `' M ` f ) ) ) |
| 24 |
23
|
rspceeqv |
|- ( ( ( `' M ` f ) e. S /\ f = ( M ` ( `' M ` f ) ) ) -> E. v e. S f = ( M ` v ) ) |
| 25 |
20 22 24
|
syl2anc |
|- ( ( ph /\ f e. ( LSubSp ` D ) ) -> E. v e. S f = ( M ` v ) ) |
| 26 |
|
psseq2 |
|- ( f = ( M ` v ) -> ( ( M ` X ) C. f <-> ( M ` X ) C. ( M ` v ) ) ) |
| 27 |
|
psseq1 |
|- ( f = ( M ` v ) -> ( f C. ( M ` Y ) <-> ( M ` v ) C. ( M ` Y ) ) ) |
| 28 |
26 27
|
anbi12d |
|- ( f = ( M ` v ) -> ( ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) ) |
| 29 |
28
|
adantl |
|- ( ( ph /\ f = ( M ` v ) ) -> ( ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) ) |
| 30 |
15 25 29
|
rexxfrd |
|- ( ph -> ( E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> E. v e. S ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) ) |
| 31 |
9
|
adantr |
|- ( ( ph /\ v e. S ) -> X e. S ) |
| 32 |
1 2 3 4 13 31 14
|
mapdsord |
|- ( ( ph /\ v e. S ) -> ( ( M ` X ) C. ( M ` v ) <-> X C. v ) ) |
| 33 |
10
|
adantr |
|- ( ( ph /\ v e. S ) -> Y e. S ) |
| 34 |
1 2 3 4 13 14 33
|
mapdsord |
|- ( ( ph /\ v e. S ) -> ( ( M ` v ) C. ( M ` Y ) <-> v C. Y ) ) |
| 35 |
32 34
|
anbi12d |
|- ( ( ph /\ v e. S ) -> ( ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) <-> ( X C. v /\ v C. Y ) ) ) |
| 36 |
35
|
rexbidva |
|- ( ph -> ( E. v e. S ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) <-> E. v e. S ( X C. v /\ v C. Y ) ) ) |
| 37 |
30 36
|
bitrd |
|- ( ph -> ( E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> E. v e. S ( X C. v /\ v C. Y ) ) ) |
| 38 |
37
|
notbid |
|- ( ph -> ( -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> -. E. v e. S ( X C. v /\ v C. Y ) ) ) |
| 39 |
11 38
|
anbi12d |
|- ( ph -> ( ( ( M ` X ) C. ( M ` Y ) /\ -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) ) <-> ( X C. Y /\ -. E. v e. S ( X C. v /\ v C. Y ) ) ) ) |
| 40 |
1 6 8
|
lcdlmod |
|- ( ph -> D e. LMod ) |
| 41 |
1 2 3 4 6 12 8 9
|
mapdcl2 |
|- ( ph -> ( M ` X ) e. ( LSubSp ` D ) ) |
| 42 |
1 2 3 4 6 12 8 10
|
mapdcl2 |
|- ( ph -> ( M ` Y ) e. ( LSubSp ` D ) ) |
| 43 |
12 7 40 41 42
|
lcvbr |
|- ( ph -> ( ( M ` X ) E ( M ` Y ) <-> ( ( M ` X ) C. ( M ` Y ) /\ -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) ) ) ) |
| 44 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 45 |
4 5 44 9 10
|
lcvbr |
|- ( ph -> ( X C Y <-> ( X C. Y /\ -. E. v e. S ( X C. v /\ v C. Y ) ) ) ) |
| 46 |
39 43 45
|
3bitr4rd |
|- ( ph -> ( X C Y <-> ( M ` X ) E ( M ` Y ) ) ) |