Metamath Proof Explorer


Theorem mapdcv

Description: Covering property of the converse of the map defined by df-mapd . (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses mapdcv.h
|- H = ( LHyp ` K )
mapdcv.m
|- M = ( ( mapd ` K ) ` W )
mapdcv.u
|- U = ( ( DVecH ` K ) ` W )
mapdcv.s
|- S = ( LSubSp ` U )
mapdcv.c
|- C = ( 
    mapdcv.d
    |- D = ( ( LCDual ` K ) ` W )
    mapdcv.e
    |- E = ( 
      mapdcv.k
      |- ( ph -> ( K e. HL /\ W e. H ) )
      mapdcv.x
      |- ( ph -> X e. S )
      mapdcv.y
      |- ( ph -> Y e. S )
      Assertion mapdcv
      |- ( ph -> ( X C Y <-> ( M ` X ) E ( M ` Y ) ) )

      Proof

      Step Hyp Ref Expression
      1 mapdcv.h
       |-  H = ( LHyp ` K )
      2 mapdcv.m
       |-  M = ( ( mapd ` K ) ` W )
      3 mapdcv.u
       |-  U = ( ( DVecH ` K ) ` W )
      4 mapdcv.s
       |-  S = ( LSubSp ` U )
      5 mapdcv.c
       |-  C = ( 
        6 mapdcv.d
         |-  D = ( ( LCDual ` K ) ` W )
        7 mapdcv.e
         |-  E = ( 
          8 mapdcv.k
           |-  ( ph -> ( K e. HL /\ W e. H ) )
          9 mapdcv.x
           |-  ( ph -> X e. S )
          10 mapdcv.y
           |-  ( ph -> Y e. S )
          11 1 2 3 4 8 9 10 mapdsord
           |-  ( ph -> ( ( M ` X ) C. ( M ` Y ) <-> X C. Y ) )
          12 eqid
           |-  ( LSubSp ` D ) = ( LSubSp ` D )
          13 8 adantr
           |-  ( ( ph /\ v e. S ) -> ( K e. HL /\ W e. H ) )
          14 simpr
           |-  ( ( ph /\ v e. S ) -> v e. S )
          15 1 2 3 4 6 12 13 14 mapdcl2
           |-  ( ( ph /\ v e. S ) -> ( M ` v ) e. ( LSubSp ` D ) )
          16 8 adantr
           |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( K e. HL /\ W e. H ) )
          17 1 2 6 12 8 mapdrn2
           |-  ( ph -> ran M = ( LSubSp ` D ) )
          18 17 eleq2d
           |-  ( ph -> ( f e. ran M <-> f e. ( LSubSp ` D ) ) )
          19 18 biimpar
           |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> f e. ran M )
          20 1 2 3 4 16 19 mapdcnvcl
           |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( `' M ` f ) e. S )
          21 1 2 16 19 mapdcnvid2
           |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> ( M ` ( `' M ` f ) ) = f )
          22 21 eqcomd
           |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> f = ( M ` ( `' M ` f ) ) )
          23 fveq2
           |-  ( v = ( `' M ` f ) -> ( M ` v ) = ( M ` ( `' M ` f ) ) )
          24 23 rspceeqv
           |-  ( ( ( `' M ` f ) e. S /\ f = ( M ` ( `' M ` f ) ) ) -> E. v e. S f = ( M ` v ) )
          25 20 22 24 syl2anc
           |-  ( ( ph /\ f e. ( LSubSp ` D ) ) -> E. v e. S f = ( M ` v ) )
          26 psseq2
           |-  ( f = ( M ` v ) -> ( ( M ` X ) C. f <-> ( M ` X ) C. ( M ` v ) ) )
          27 psseq1
           |-  ( f = ( M ` v ) -> ( f C. ( M ` Y ) <-> ( M ` v ) C. ( M ` Y ) ) )
          28 26 27 anbi12d
           |-  ( f = ( M ` v ) -> ( ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) )
          29 28 adantl
           |-  ( ( ph /\ f = ( M ` v ) ) -> ( ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) )
          30 15 25 29 rexxfrd
           |-  ( ph -> ( E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> E. v e. S ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) ) )
          31 9 adantr
           |-  ( ( ph /\ v e. S ) -> X e. S )
          32 1 2 3 4 13 31 14 mapdsord
           |-  ( ( ph /\ v e. S ) -> ( ( M ` X ) C. ( M ` v ) <-> X C. v ) )
          33 10 adantr
           |-  ( ( ph /\ v e. S ) -> Y e. S )
          34 1 2 3 4 13 14 33 mapdsord
           |-  ( ( ph /\ v e. S ) -> ( ( M ` v ) C. ( M ` Y ) <-> v C. Y ) )
          35 32 34 anbi12d
           |-  ( ( ph /\ v e. S ) -> ( ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) <-> ( X C. v /\ v C. Y ) ) )
          36 35 rexbidva
           |-  ( ph -> ( E. v e. S ( ( M ` X ) C. ( M ` v ) /\ ( M ` v ) C. ( M ` Y ) ) <-> E. v e. S ( X C. v /\ v C. Y ) ) )
          37 30 36 bitrd
           |-  ( ph -> ( E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> E. v e. S ( X C. v /\ v C. Y ) ) )
          38 37 notbid
           |-  ( ph -> ( -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) <-> -. E. v e. S ( X C. v /\ v C. Y ) ) )
          39 11 38 anbi12d
           |-  ( ph -> ( ( ( M ` X ) C. ( M ` Y ) /\ -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) ) <-> ( X C. Y /\ -. E. v e. S ( X C. v /\ v C. Y ) ) ) )
          40 1 6 8 lcdlmod
           |-  ( ph -> D e. LMod )
          41 1 2 3 4 6 12 8 9 mapdcl2
           |-  ( ph -> ( M ` X ) e. ( LSubSp ` D ) )
          42 1 2 3 4 6 12 8 10 mapdcl2
           |-  ( ph -> ( M ` Y ) e. ( LSubSp ` D ) )
          43 12 7 40 41 42 lcvbr
           |-  ( ph -> ( ( M ` X ) E ( M ` Y ) <-> ( ( M ` X ) C. ( M ` Y ) /\ -. E. f e. ( LSubSp ` D ) ( ( M ` X ) C. f /\ f C. ( M ` Y ) ) ) ) )
          44 1 3 8 dvhlmod
           |-  ( ph -> U e. LMod )
          45 4 5 44 9 10 lcvbr
           |-  ( ph -> ( X C Y <-> ( X C. Y /\ -. E. v e. S ( X C. v /\ v C. Y ) ) ) )
          46 39 43 45 3bitr4rd
           |-  ( ph -> ( X C Y <-> ( M ` X ) E ( M ` Y ) ) )