Step |
Hyp |
Ref |
Expression |
1 |
|
mapdcnvcl.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdcnvcl.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdcnvcl.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdcnvcl.s |
|- S = ( LSubSp ` U ) |
5 |
|
mapdcnvcl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
mapdcnvcl.x |
|- ( ph -> X e. ran M ) |
7 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
8 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
9 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
10 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
11 |
|
eqid |
|- ( LSubSp ` ( LDual ` U ) ) = ( LSubSp ` ( LDual ` U ) ) |
12 |
|
eqid |
|- { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } = { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } |
13 |
1 7 2 3 4 8 9 10 11 12 5
|
mapd1o |
|- ( ph -> M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) ) |
14 |
|
f1of1 |
|- ( M : S -1-1-onto-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) -> M : S -1-1-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) ) |
15 |
|
f1f1orn |
|- ( M : S -1-1-> ( ( LSubSp ` ( LDual ` U ) ) i^i ~P { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } ) -> M : S -1-1-onto-> ran M ) |
16 |
13 14 15
|
3syl |
|- ( ph -> M : S -1-1-onto-> ran M ) |
17 |
|
f1ocnvdm |
|- ( ( M : S -1-1-onto-> ran M /\ X e. ran M ) -> ( `' M ` X ) e. S ) |
18 |
16 6 17
|
syl2anc |
|- ( ph -> ( `' M ` X ) e. S ) |