Metamath Proof Explorer


Theorem lcdlmod

Description: The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdlmod.h
|- H = ( LHyp ` K )
lcdlmod.c
|- C = ( ( LCDual ` K ) ` W )
lcdlmod.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcdlmod
|- ( ph -> C e. LMod )

Proof

Step Hyp Ref Expression
1 lcdlmod.h
 |-  H = ( LHyp ` K )
2 lcdlmod.c
 |-  C = ( ( LCDual ` K ) ` W )
3 lcdlmod.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
4 1 2 3 lcdlvec
 |-  ( ph -> C e. LVec )
5 lveclmod
 |-  ( C e. LVec -> C e. LMod )
6 4 5 syl
 |-  ( ph -> C e. LMod )