Metamath Proof Explorer


Theorem lcdlmod

Description: The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdlmod.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdlmod.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdlmod.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcdlmod ( 𝜑𝐶 ∈ LMod )

Proof

Step Hyp Ref Expression
1 lcdlmod.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdlmod.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
3 lcdlmod.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 1 2 3 lcdlvec ( 𝜑𝐶 ∈ LVec )
5 lveclmod ( 𝐶 ∈ LVec → 𝐶 ∈ LMod )
6 4 5 syl ( 𝜑𝐶 ∈ LMod )