Metamath Proof Explorer


Theorem lcdlmod

Description: The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdlmod.h H=LHypK
lcdlmod.c C=LCDualKW
lcdlmod.k φKHLWH
Assertion lcdlmod φCLMod

Proof

Step Hyp Ref Expression
1 lcdlmod.h H=LHypK
2 lcdlmod.c C=LCDualKW
3 lcdlmod.k φKHLWH
4 1 2 3 lcdlvec φCLVec
5 lveclmod CLVecCLMod
6 4 5 syl φCLMod