Metamath Proof Explorer


Theorem lcdlmod

Description: The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdlmod.h H = LHyp K
lcdlmod.c C = LCDual K W
lcdlmod.k φ K HL W H
Assertion lcdlmod φ C LMod

Proof

Step Hyp Ref Expression
1 lcdlmod.h H = LHyp K
2 lcdlmod.c C = LCDual K W
3 lcdlmod.k φ K HL W H
4 1 2 3 lcdlvec φ C LVec
5 lveclmod C LVec C LMod
6 4 5 syl φ C LMod