Step |
Hyp |
Ref |
Expression |
1 |
|
mapdincl.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdincl.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdincl.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdincl.c |
|- C = ( ( LCDual ` K ) ` W ) |
5 |
|
mapdincl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
mapdincl.x |
|- ( ph -> X e. ran M ) |
7 |
|
mapdincl.y |
|- ( ph -> Y e. ran M ) |
8 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
9 |
1 8 5
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
10 |
|
eqid |
|- ( LSubSp ` ( ( LCDual ` K ) ` W ) ) = ( LSubSp ` ( ( LCDual ` K ) ` W ) ) |
11 |
1 2 8 10 5
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
12 |
6 11
|
eleqtrd |
|- ( ph -> X e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
13 |
7 11
|
eleqtrd |
|- ( ph -> Y e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
14 |
10
|
lssincl |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ X e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) /\ Y e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) -> ( X i^i Y ) e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
15 |
9 12 13 14
|
syl3anc |
|- ( ph -> ( X i^i Y ) e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
16 |
15 11
|
eleqtrrd |
|- ( ph -> ( X i^i Y ) e. ran M ) |