Step |
Hyp |
Ref |
Expression |
1 |
|
mapdincl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdincl.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdincl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdincl.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdincl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
mapdincl.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑀 ) |
7 |
|
mapdincl.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝑀 ) |
8 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 8 5
|
lcdlmod |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
11 |
1 2 8 10 5
|
mapdrn2 |
⊢ ( 𝜑 → ran 𝑀 = ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
12 |
6 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
13 |
7 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
14 |
10
|
lssincl |
⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ 𝑋 ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑌 ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑋 ∩ 𝑌 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
15 |
9 12 13 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
16 |
15 11
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ∈ ran 𝑀 ) |