Metamath Proof Explorer


Theorem mapdincl

Description: Closure of dual subspace intersection for the map defined by df-mapd . (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdincl.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdincl.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdincl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdincl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdincl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdincl.x ( 𝜑𝑋 ∈ ran 𝑀 )
mapdincl.y ( 𝜑𝑌 ∈ ran 𝑀 )
Assertion mapdincl ( 𝜑 → ( 𝑋𝑌 ) ∈ ran 𝑀 )

Proof

Step Hyp Ref Expression
1 mapdincl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdincl.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdincl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdincl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
5 mapdincl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 mapdincl.x ( 𝜑𝑋 ∈ ran 𝑀 )
7 mapdincl.y ( 𝜑𝑌 ∈ ran 𝑀 )
8 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 1 8 5 lcdlmod ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod )
10 eqid ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
11 1 2 8 10 5 mapdrn2 ( 𝜑 → ran 𝑀 = ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
12 6 11 eleqtrd ( 𝜑𝑋 ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 7 11 eleqtrd ( 𝜑𝑌 ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
14 10 lssincl ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ 𝑋 ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑌 ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑋𝑌 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
15 9 12 13 14 syl3anc ( 𝜑 → ( 𝑋𝑌 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
16 15 11 eleqtrrd ( 𝜑 → ( 𝑋𝑌 ) ∈ ran 𝑀 )