Metamath Proof Explorer


Theorem mapdin

Description: Subspace intersection is preserved by the map defined by df-mapd . Part of property (e) in Baer p. 40. (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdin.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdin.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdin.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdin.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapdin.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdin.x ( 𝜑𝑋𝑆 )
mapdin.y ( 𝜑𝑌𝑆 )
Assertion mapdin ( 𝜑 → ( 𝑀 ‘ ( 𝑋𝑌 ) ) = ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 mapdin.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdin.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdin.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdin.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 mapdin.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 mapdin.x ( 𝜑𝑋𝑆 )
7 mapdin.y ( 𝜑𝑌𝑆 )
8 inss1 ( 𝑋𝑌 ) ⊆ 𝑋
9 1 3 5 dvhlmod ( 𝜑𝑈 ∈ LMod )
10 4 lssincl ( ( 𝑈 ∈ LMod ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋𝑌 ) ∈ 𝑆 )
11 9 6 7 10 syl3anc ( 𝜑 → ( 𝑋𝑌 ) ∈ 𝑆 )
12 1 3 4 2 5 11 6 mapdord ( 𝜑 → ( ( 𝑀 ‘ ( 𝑋𝑌 ) ) ⊆ ( 𝑀𝑋 ) ↔ ( 𝑋𝑌 ) ⊆ 𝑋 ) )
13 8 12 mpbiri ( 𝜑 → ( 𝑀 ‘ ( 𝑋𝑌 ) ) ⊆ ( 𝑀𝑋 ) )
14 inss2 ( 𝑋𝑌 ) ⊆ 𝑌
15 1 3 4 2 5 11 7 mapdord ( 𝜑 → ( ( 𝑀 ‘ ( 𝑋𝑌 ) ) ⊆ ( 𝑀𝑌 ) ↔ ( 𝑋𝑌 ) ⊆ 𝑌 ) )
16 14 15 mpbiri ( 𝜑 → ( 𝑀 ‘ ( 𝑋𝑌 ) ) ⊆ ( 𝑀𝑌 ) )
17 13 16 ssind ( 𝜑 → ( 𝑀 ‘ ( 𝑋𝑌 ) ) ⊆ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) )
18 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
19 eqid ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
20 1 2 3 4 18 19 5 6 mapdcl2 ( 𝜑 → ( 𝑀𝑋 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
21 1 2 18 19 5 mapdrn2 ( 𝜑 → ran 𝑀 = ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
22 20 21 eleqtrrd ( 𝜑 → ( 𝑀𝑋 ) ∈ ran 𝑀 )
23 1 2 3 4 18 19 5 7 mapdcl2 ( 𝜑 → ( 𝑀𝑌 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
24 23 21 eleqtrrd ( 𝜑 → ( 𝑀𝑌 ) ∈ ran 𝑀 )
25 1 2 3 18 5 22 24 mapdincl ( 𝜑 → ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ∈ ran 𝑀 )
26 1 2 5 25 mapdcnvid2 ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ) = ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) )
27 inss1 ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ⊆ ( 𝑀𝑋 )
28 26 27 eqsstrdi ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ) ⊆ ( 𝑀𝑋 ) )
29 1 18 5 lcdlmod ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod )
30 19 lssincl ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( 𝑀𝑋 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( 𝑀𝑌 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
31 29 20 23 30 syl3anc ( 𝜑 → ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
32 31 21 eleqtrrd ( 𝜑 → ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ∈ ran 𝑀 )
33 1 2 3 4 5 32 mapdcnvcl ( 𝜑 → ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ∈ 𝑆 )
34 1 3 4 2 5 33 6 mapdord ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ) ⊆ ( 𝑀𝑋 ) ↔ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ⊆ 𝑋 ) )
35 28 34 mpbid ( 𝜑 → ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ⊆ 𝑋 )
36 1 2 5 32 mapdcnvid2 ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ) = ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) )
37 inss2 ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ⊆ ( 𝑀𝑌 )
38 36 37 eqsstrdi ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ) ⊆ ( 𝑀𝑌 ) )
39 1 3 4 2 5 33 7 mapdord ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ) ⊆ ( 𝑀𝑌 ) ↔ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ⊆ 𝑌 ) )
40 38 39 mpbid ( 𝜑 → ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ⊆ 𝑌 )
41 35 40 ssind ( 𝜑 → ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ⊆ ( 𝑋𝑌 ) )
42 1 3 4 2 5 33 11 mapdord ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ) ⊆ ( 𝑀 ‘ ( 𝑋𝑌 ) ) ↔ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ⊆ ( 𝑋𝑌 ) ) )
43 41 42 mpbird ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ) ) ⊆ ( 𝑀 ‘ ( 𝑋𝑌 ) ) )
44 26 43 eqsstrrd ( 𝜑 → ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) ⊆ ( 𝑀 ‘ ( 𝑋𝑌 ) ) )
45 17 44 eqssd ( 𝜑 → ( 𝑀 ‘ ( 𝑋𝑌 ) ) = ( ( 𝑀𝑋 ) ∩ ( 𝑀𝑌 ) ) )