Step |
Hyp |
Ref |
Expression |
1 |
|
mapdin.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdin.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdin.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdin.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
mapdin.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
mapdin.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
7 |
|
mapdin.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
8 |
|
inss1 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 |
9 |
1 3 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
10 |
4
|
lssincl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ∩ 𝑌 ) ∈ 𝑆 ) |
11 |
9 6 7 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ∈ 𝑆 ) |
12 |
1 3 4 2 5 11 6
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 ) ) |
13 |
8 12
|
mpbiri |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( 𝑀 ‘ 𝑋 ) ) |
14 |
|
inss2 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 |
15 |
1 3 4 2 5 11 7
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) ) |
16 |
14 15
|
mpbiri |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( 𝑀 ‘ 𝑌 ) ) |
17 |
13 16
|
ssind |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) |
18 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
|
eqid |
⊢ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
20 |
1 2 3 4 18 19 5 6
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
21 |
1 2 18 19 5
|
mapdrn2 |
⊢ ( 𝜑 → ran 𝑀 = ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
22 |
20 21
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ran 𝑀 ) |
23 |
1 2 3 4 18 19 5 7
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
24 |
23 21
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ran 𝑀 ) |
25 |
1 2 3 18 5 22 24
|
mapdincl |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ∈ ran 𝑀 ) |
26 |
1 2 5 25
|
mapdcnvid2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ) = ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) |
27 |
|
inss1 |
⊢ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ⊆ ( 𝑀 ‘ 𝑋 ) |
28 |
26 27
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ) ⊆ ( 𝑀 ‘ 𝑋 ) ) |
29 |
1 18 5
|
lcdlmod |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
30 |
19
|
lssincl |
⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( 𝑀 ‘ 𝑋 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
31 |
29 20 23 30
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ∈ ( LSubSp ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
32 |
31 21
|
eleqtrrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ∈ ran 𝑀 ) |
33 |
1 2 3 4 5 32
|
mapdcnvcl |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ∈ 𝑆 ) |
34 |
1 3 4 2 5 33 6
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ) ⊆ ( 𝑀 ‘ 𝑋 ) ↔ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ⊆ 𝑋 ) ) |
35 |
28 34
|
mpbid |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ⊆ 𝑋 ) |
36 |
1 2 5 32
|
mapdcnvid2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ) = ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) |
37 |
|
inss2 |
⊢ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ⊆ ( 𝑀 ‘ 𝑌 ) |
38 |
36 37
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ) ⊆ ( 𝑀 ‘ 𝑌 ) ) |
39 |
1 3 4 2 5 33 7
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ⊆ 𝑌 ) ) |
40 |
38 39
|
mpbid |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ⊆ 𝑌 ) |
41 |
35 40
|
ssind |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ⊆ ( 𝑋 ∩ 𝑌 ) ) |
42 |
1 3 4 2 5 33 11
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) ↔ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ⊆ ( 𝑋 ∩ 𝑌 ) ) ) |
43 |
41 42
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
44 |
26 43
|
eqsstrrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
45 |
17 44
|
eqssd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( 𝑀 ‘ 𝑋 ) ∩ ( 𝑀 ‘ 𝑌 ) ) ) |