Metamath Proof Explorer


Theorem mapdlsmcl

Description: Closure of dual subspace sum for the map defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdlsmcl.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdlsmcl.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdlsmcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdlsmcl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdlsmcl.p = ( LSSum ‘ 𝐶 )
mapdlsmcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdlsmcl.x ( 𝜑𝑋 ∈ ran 𝑀 )
mapdlsmcl.y ( 𝜑𝑌 ∈ ran 𝑀 )
Assertion mapdlsmcl ( 𝜑 → ( 𝑋 𝑌 ) ∈ ran 𝑀 )

Proof

Step Hyp Ref Expression
1 mapdlsmcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdlsmcl.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdlsmcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdlsmcl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
5 mapdlsmcl.p = ( LSSum ‘ 𝐶 )
6 mapdlsmcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 mapdlsmcl.x ( 𝜑𝑋 ∈ ran 𝑀 )
8 mapdlsmcl.y ( 𝜑𝑌 ∈ ran 𝑀 )
9 1 4 6 lcdlmod ( 𝜑𝐶 ∈ LMod )
10 eqid ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 )
11 1 2 4 10 6 mapdrn2 ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐶 ) )
12 7 11 eleqtrd ( 𝜑𝑋 ∈ ( LSubSp ‘ 𝐶 ) )
13 8 11 eleqtrd ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝐶 ) )
14 10 5 lsmcl ( ( 𝐶 ∈ LMod ∧ 𝑋 ∈ ( LSubSp ‘ 𝐶 ) ∧ 𝑌 ∈ ( LSubSp ‘ 𝐶 ) ) → ( 𝑋 𝑌 ) ∈ ( LSubSp ‘ 𝐶 ) )
15 9 12 13 14 syl3anc ( 𝜑 → ( 𝑋 𝑌 ) ∈ ( LSubSp ‘ 𝐶 ) )
16 15 11 eleqtrrd ( 𝜑 → ( 𝑋 𝑌 ) ∈ ran 𝑀 )