Metamath Proof Explorer


Theorem mapdlsmcl

Description: Closure of dual subspace sum for the map defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdlsmcl.h
|- H = ( LHyp ` K )
mapdlsmcl.m
|- M = ( ( mapd ` K ) ` W )
mapdlsmcl.u
|- U = ( ( DVecH ` K ) ` W )
mapdlsmcl.c
|- C = ( ( LCDual ` K ) ` W )
mapdlsmcl.p
|- .(+) = ( LSSum ` C )
mapdlsmcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdlsmcl.x
|- ( ph -> X e. ran M )
mapdlsmcl.y
|- ( ph -> Y e. ran M )
Assertion mapdlsmcl
|- ( ph -> ( X .(+) Y ) e. ran M )

Proof

Step Hyp Ref Expression
1 mapdlsmcl.h
 |-  H = ( LHyp ` K )
2 mapdlsmcl.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdlsmcl.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdlsmcl.c
 |-  C = ( ( LCDual ` K ) ` W )
5 mapdlsmcl.p
 |-  .(+) = ( LSSum ` C )
6 mapdlsmcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 mapdlsmcl.x
 |-  ( ph -> X e. ran M )
8 mapdlsmcl.y
 |-  ( ph -> Y e. ran M )
9 1 4 6 lcdlmod
 |-  ( ph -> C e. LMod )
10 eqid
 |-  ( LSubSp ` C ) = ( LSubSp ` C )
11 1 2 4 10 6 mapdrn2
 |-  ( ph -> ran M = ( LSubSp ` C ) )
12 7 11 eleqtrd
 |-  ( ph -> X e. ( LSubSp ` C ) )
13 8 11 eleqtrd
 |-  ( ph -> Y e. ( LSubSp ` C ) )
14 10 5 lsmcl
 |-  ( ( C e. LMod /\ X e. ( LSubSp ` C ) /\ Y e. ( LSubSp ` C ) ) -> ( X .(+) Y ) e. ( LSubSp ` C ) )
15 9 12 13 14 syl3anc
 |-  ( ph -> ( X .(+) Y ) e. ( LSubSp ` C ) )
16 15 11 eleqtrrd
 |-  ( ph -> ( X .(+) Y ) e. ran M )