| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdlsm.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdlsm.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdlsm.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdlsm.s |
|- S = ( LSubSp ` U ) |
| 5 |
|
mapdlsm.p |
|- .(+) = ( LSSum ` U ) |
| 6 |
|
mapdlsm.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 7 |
|
mapdlsm.q |
|- .+b = ( LSSum ` C ) |
| 8 |
|
mapdlsm.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
mapdlsm.x |
|- ( ph -> X e. S ) |
| 10 |
|
mapdlsm.y |
|- ( ph -> Y e. S ) |
| 11 |
1 6 8
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 12 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
| 13 |
12
|
lsssssubg |
|- ( C e. LMod -> ( LSubSp ` C ) C_ ( SubGrp ` C ) ) |
| 14 |
11 13
|
syl |
|- ( ph -> ( LSubSp ` C ) C_ ( SubGrp ` C ) ) |
| 15 |
1 2 3 4 6 12 8 9
|
mapdcl2 |
|- ( ph -> ( M ` X ) e. ( LSubSp ` C ) ) |
| 16 |
14 15
|
sseldd |
|- ( ph -> ( M ` X ) e. ( SubGrp ` C ) ) |
| 17 |
1 2 3 4 6 12 8 10
|
mapdcl2 |
|- ( ph -> ( M ` Y ) e. ( LSubSp ` C ) ) |
| 18 |
14 17
|
sseldd |
|- ( ph -> ( M ` Y ) e. ( SubGrp ` C ) ) |
| 19 |
7
|
lsmub1 |
|- ( ( ( M ` X ) e. ( SubGrp ` C ) /\ ( M ` Y ) e. ( SubGrp ` C ) ) -> ( M ` X ) C_ ( ( M ` X ) .+b ( M ` Y ) ) ) |
| 20 |
16 18 19
|
syl2anc |
|- ( ph -> ( M ` X ) C_ ( ( M ` X ) .+b ( M ` Y ) ) ) |
| 21 |
1 2 3 4 8 9
|
mapdcl |
|- ( ph -> ( M ` X ) e. ran M ) |
| 22 |
1 2 3 4 8 10
|
mapdcl |
|- ( ph -> ( M ` Y ) e. ran M ) |
| 23 |
1 2 3 6 7 8 21 22
|
mapdlsmcl |
|- ( ph -> ( ( M ` X ) .+b ( M ` Y ) ) e. ran M ) |
| 24 |
1 2 8 23
|
mapdcnvid2 |
|- ( ph -> ( M ` ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) = ( ( M ` X ) .+b ( M ` Y ) ) ) |
| 25 |
20 24
|
sseqtrrd |
|- ( ph -> ( M ` X ) C_ ( M ` ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) ) |
| 26 |
1 2 3 4 8 23
|
mapdcnvcl |
|- ( ph -> ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) e. S ) |
| 27 |
1 3 4 2 8 9 26
|
mapdord |
|- ( ph -> ( ( M ` X ) C_ ( M ` ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) <-> X C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) ) |
| 28 |
25 27
|
mpbid |
|- ( ph -> X C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) |
| 29 |
7
|
lsmub2 |
|- ( ( ( M ` X ) e. ( SubGrp ` C ) /\ ( M ` Y ) e. ( SubGrp ` C ) ) -> ( M ` Y ) C_ ( ( M ` X ) .+b ( M ` Y ) ) ) |
| 30 |
16 18 29
|
syl2anc |
|- ( ph -> ( M ` Y ) C_ ( ( M ` X ) .+b ( M ` Y ) ) ) |
| 31 |
30 24
|
sseqtrrd |
|- ( ph -> ( M ` Y ) C_ ( M ` ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) ) |
| 32 |
1 3 4 2 8 10 26
|
mapdord |
|- ( ph -> ( ( M ` Y ) C_ ( M ` ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) <-> Y C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) ) |
| 33 |
31 32
|
mpbid |
|- ( ph -> Y C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) |
| 34 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 35 |
4
|
lsssssubg |
|- ( U e. LMod -> S C_ ( SubGrp ` U ) ) |
| 36 |
34 35
|
syl |
|- ( ph -> S C_ ( SubGrp ` U ) ) |
| 37 |
36 9
|
sseldd |
|- ( ph -> X e. ( SubGrp ` U ) ) |
| 38 |
36 10
|
sseldd |
|- ( ph -> Y e. ( SubGrp ` U ) ) |
| 39 |
36 26
|
sseldd |
|- ( ph -> ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) e. ( SubGrp ` U ) ) |
| 40 |
5
|
lsmlub |
|- ( ( X e. ( SubGrp ` U ) /\ Y e. ( SubGrp ` U ) /\ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) e. ( SubGrp ` U ) ) -> ( ( X C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) /\ Y C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) <-> ( X .(+) Y ) C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) ) |
| 41 |
37 38 39 40
|
syl3anc |
|- ( ph -> ( ( X C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) /\ Y C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) <-> ( X .(+) Y ) C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) ) |
| 42 |
28 33 41
|
mpbi2and |
|- ( ph -> ( X .(+) Y ) C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) |
| 43 |
4 5
|
lsmcl |
|- ( ( U e. LMod /\ X e. S /\ Y e. S ) -> ( X .(+) Y ) e. S ) |
| 44 |
34 9 10 43
|
syl3anc |
|- ( ph -> ( X .(+) Y ) e. S ) |
| 45 |
1 3 4 2 8 44 26
|
mapdord |
|- ( ph -> ( ( M ` ( X .(+) Y ) ) C_ ( M ` ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) <-> ( X .(+) Y ) C_ ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) ) |
| 46 |
42 45
|
mpbird |
|- ( ph -> ( M ` ( X .(+) Y ) ) C_ ( M ` ( `' M ` ( ( M ` X ) .+b ( M ` Y ) ) ) ) ) |
| 47 |
46 24
|
sseqtrd |
|- ( ph -> ( M ` ( X .(+) Y ) ) C_ ( ( M ` X ) .+b ( M ` Y ) ) ) |
| 48 |
5
|
lsmub1 |
|- ( ( X e. ( SubGrp ` U ) /\ Y e. ( SubGrp ` U ) ) -> X C_ ( X .(+) Y ) ) |
| 49 |
37 38 48
|
syl2anc |
|- ( ph -> X C_ ( X .(+) Y ) ) |
| 50 |
1 3 4 2 8 9 44
|
mapdord |
|- ( ph -> ( ( M ` X ) C_ ( M ` ( X .(+) Y ) ) <-> X C_ ( X .(+) Y ) ) ) |
| 51 |
49 50
|
mpbird |
|- ( ph -> ( M ` X ) C_ ( M ` ( X .(+) Y ) ) ) |
| 52 |
5
|
lsmub2 |
|- ( ( X e. ( SubGrp ` U ) /\ Y e. ( SubGrp ` U ) ) -> Y C_ ( X .(+) Y ) ) |
| 53 |
37 38 52
|
syl2anc |
|- ( ph -> Y C_ ( X .(+) Y ) ) |
| 54 |
1 3 4 2 8 10 44
|
mapdord |
|- ( ph -> ( ( M ` Y ) C_ ( M ` ( X .(+) Y ) ) <-> Y C_ ( X .(+) Y ) ) ) |
| 55 |
53 54
|
mpbird |
|- ( ph -> ( M ` Y ) C_ ( M ` ( X .(+) Y ) ) ) |
| 56 |
1 2 3 4 6 12 8 44
|
mapdcl2 |
|- ( ph -> ( M ` ( X .(+) Y ) ) e. ( LSubSp ` C ) ) |
| 57 |
14 56
|
sseldd |
|- ( ph -> ( M ` ( X .(+) Y ) ) e. ( SubGrp ` C ) ) |
| 58 |
7
|
lsmlub |
|- ( ( ( M ` X ) e. ( SubGrp ` C ) /\ ( M ` Y ) e. ( SubGrp ` C ) /\ ( M ` ( X .(+) Y ) ) e. ( SubGrp ` C ) ) -> ( ( ( M ` X ) C_ ( M ` ( X .(+) Y ) ) /\ ( M ` Y ) C_ ( M ` ( X .(+) Y ) ) ) <-> ( ( M ` X ) .+b ( M ` Y ) ) C_ ( M ` ( X .(+) Y ) ) ) ) |
| 59 |
16 18 57 58
|
syl3anc |
|- ( ph -> ( ( ( M ` X ) C_ ( M ` ( X .(+) Y ) ) /\ ( M ` Y ) C_ ( M ` ( X .(+) Y ) ) ) <-> ( ( M ` X ) .+b ( M ` Y ) ) C_ ( M ` ( X .(+) Y ) ) ) ) |
| 60 |
51 55 59
|
mpbi2and |
|- ( ph -> ( ( M ` X ) .+b ( M ` Y ) ) C_ ( M ` ( X .(+) Y ) ) ) |
| 61 |
47 60
|
eqssd |
|- ( ph -> ( M ` ( X .(+) Y ) ) = ( ( M ` X ) .+b ( M ` Y ) ) ) |