Step |
Hyp |
Ref |
Expression |
1 |
|
mapdlsm.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdlsm.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdlsm.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdlsm.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
mapdlsm.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
6 |
|
mapdlsm.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
mapdlsm.q |
⊢ ✚ = ( LSSum ‘ 𝐶 ) |
8 |
|
mapdlsm.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
mapdlsm.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
10 |
|
mapdlsm.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
11 |
1 6 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
12 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
13 |
12
|
lsssssubg |
⊢ ( 𝐶 ∈ LMod → ( LSubSp ‘ 𝐶 ) ⊆ ( SubGrp ‘ 𝐶 ) ) |
14 |
11 13
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝐶 ) ⊆ ( SubGrp ‘ 𝐶 ) ) |
15 |
1 2 3 4 6 12 8 9
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝐶 ) ) |
16 |
14 15
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐶 ) ) |
17 |
1 2 3 4 6 12 8 10
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝐶 ) ) |
18 |
14 17
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( SubGrp ‘ 𝐶 ) ) |
19 |
7
|
lsmub1 |
⊢ ( ( ( 𝑀 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( SubGrp ‘ 𝐶 ) ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) |
20 |
16 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ⊆ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) |
21 |
1 2 3 4 8 9
|
mapdcl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ran 𝑀 ) |
22 |
1 2 3 4 8 10
|
mapdcl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ran 𝑀 ) |
23 |
1 2 3 6 7 8 21 22
|
mapdlsmcl |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ∈ ran 𝑀 ) |
24 |
1 2 8 23
|
mapdcnvid2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) = ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) |
25 |
20 24
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
26 |
1 2 3 4 8 23
|
mapdcnvcl |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ∈ 𝑆 ) |
27 |
1 3 4 2 8 9 26
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ↔ 𝑋 ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
28 |
25 27
|
mpbid |
⊢ ( 𝜑 → 𝑋 ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) |
29 |
7
|
lsmub2 |
⊢ ( ( ( 𝑀 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( SubGrp ‘ 𝐶 ) ) → ( 𝑀 ‘ 𝑌 ) ⊆ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) |
30 |
16 18 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ⊆ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) |
31 |
30 24
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
32 |
1 3 4 2 8 10 26
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ↔ 𝑌 ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
33 |
31 32
|
mpbid |
⊢ ( 𝜑 → 𝑌 ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) |
34 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
35 |
4
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
37 |
36 9
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ) |
38 |
36 10
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( SubGrp ‘ 𝑈 ) ) |
39 |
36 26
|
sseldd |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
40 |
5
|
lsmlub |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑌 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( 𝑋 ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ∧ 𝑌 ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ↔ ( 𝑋 ⊕ 𝑌 ) ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
41 |
37 38 39 40
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ∧ 𝑌 ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ↔ ( 𝑋 ⊕ 𝑌 ) ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
42 |
28 33 41
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑌 ) ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) |
43 |
4 5
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ⊕ 𝑌 ) ∈ 𝑆 ) |
44 |
34 9 10 43
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑌 ) ∈ 𝑆 ) |
45 |
1 3 4 2 8 44 26
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ⊆ ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ↔ ( 𝑋 ⊕ 𝑌 ) ⊆ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
46 |
42 45
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ⊆ ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
47 |
46 24
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ⊆ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) |
48 |
5
|
lsmub1 |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑌 ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑋 ⊆ ( 𝑋 ⊕ 𝑌 ) ) |
49 |
37 38 48
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑋 ⊕ 𝑌 ) ) |
50 |
1 3 4 2 8 9 44
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ↔ 𝑋 ⊆ ( 𝑋 ⊕ 𝑌 ) ) ) |
51 |
49 50
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ) |
52 |
5
|
lsmub2 |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑌 ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑌 ⊆ ( 𝑋 ⊕ 𝑌 ) ) |
53 |
37 38 52
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ ( 𝑋 ⊕ 𝑌 ) ) |
54 |
1 3 4 2 8 10 44
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ↔ 𝑌 ⊆ ( 𝑋 ⊕ 𝑌 ) ) ) |
55 |
53 54
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ) |
56 |
1 2 3 4 6 12 8 44
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
57 |
14 56
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ∈ ( SubGrp ‘ 𝐶 ) ) |
58 |
7
|
lsmlub |
⊢ ( ( ( 𝑀 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ∈ ( SubGrp ‘ 𝐶 ) ) → ( ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ) ↔ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ) ) |
59 |
16 18 57 58
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ) ↔ ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ) ) |
60 |
51 55 59
|
mpbi2and |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) ) |
61 |
47 60
|
eqssd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑋 ⊕ 𝑌 ) ) = ( ( 𝑀 ‘ 𝑋 ) ✚ ( 𝑀 ‘ 𝑌 ) ) ) |