Metamath Proof Explorer


Theorem mapdlsm

Description: Subspace sum is preserved by the map defined by df-mapd . Part of property (e) in Baer p. 40. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdlsm.h H=LHypK
mapdlsm.m M=mapdKW
mapdlsm.u U=DVecHKW
mapdlsm.s S=LSubSpU
mapdlsm.p ˙=LSSumU
mapdlsm.c C=LCDualKW
mapdlsm.q ˙=LSSumC
mapdlsm.k φKHLWH
mapdlsm.x φXS
mapdlsm.y φYS
Assertion mapdlsm φMX˙Y=MX˙MY

Proof

Step Hyp Ref Expression
1 mapdlsm.h H=LHypK
2 mapdlsm.m M=mapdKW
3 mapdlsm.u U=DVecHKW
4 mapdlsm.s S=LSubSpU
5 mapdlsm.p ˙=LSSumU
6 mapdlsm.c C=LCDualKW
7 mapdlsm.q ˙=LSSumC
8 mapdlsm.k φKHLWH
9 mapdlsm.x φXS
10 mapdlsm.y φYS
11 1 6 8 lcdlmod φCLMod
12 eqid LSubSpC=LSubSpC
13 12 lsssssubg CLModLSubSpCSubGrpC
14 11 13 syl φLSubSpCSubGrpC
15 1 2 3 4 6 12 8 9 mapdcl2 φMXLSubSpC
16 14 15 sseldd φMXSubGrpC
17 1 2 3 4 6 12 8 10 mapdcl2 φMYLSubSpC
18 14 17 sseldd φMYSubGrpC
19 7 lsmub1 MXSubGrpCMYSubGrpCMXMX˙MY
20 16 18 19 syl2anc φMXMX˙MY
21 1 2 3 4 8 9 mapdcl φMXranM
22 1 2 3 4 8 10 mapdcl φMYranM
23 1 2 3 6 7 8 21 22 mapdlsmcl φMX˙MYranM
24 1 2 8 23 mapdcnvid2 φMM-1MX˙MY=MX˙MY
25 20 24 sseqtrrd φMXMM-1MX˙MY
26 1 2 3 4 8 23 mapdcnvcl φM-1MX˙MYS
27 1 3 4 2 8 9 26 mapdord φMXMM-1MX˙MYXM-1MX˙MY
28 25 27 mpbid φXM-1MX˙MY
29 7 lsmub2 MXSubGrpCMYSubGrpCMYMX˙MY
30 16 18 29 syl2anc φMYMX˙MY
31 30 24 sseqtrrd φMYMM-1MX˙MY
32 1 3 4 2 8 10 26 mapdord φMYMM-1MX˙MYYM-1MX˙MY
33 31 32 mpbid φYM-1MX˙MY
34 1 3 8 dvhlmod φULMod
35 4 lsssssubg ULModSSubGrpU
36 34 35 syl φSSubGrpU
37 36 9 sseldd φXSubGrpU
38 36 10 sseldd φYSubGrpU
39 36 26 sseldd φM-1MX˙MYSubGrpU
40 5 lsmlub XSubGrpUYSubGrpUM-1MX˙MYSubGrpUXM-1MX˙MYYM-1MX˙MYX˙YM-1MX˙MY
41 37 38 39 40 syl3anc φXM-1MX˙MYYM-1MX˙MYX˙YM-1MX˙MY
42 28 33 41 mpbi2and φX˙YM-1MX˙MY
43 4 5 lsmcl ULModXSYSX˙YS
44 34 9 10 43 syl3anc φX˙YS
45 1 3 4 2 8 44 26 mapdord φMX˙YMM-1MX˙MYX˙YM-1MX˙MY
46 42 45 mpbird φMX˙YMM-1MX˙MY
47 46 24 sseqtrd φMX˙YMX˙MY
48 5 lsmub1 XSubGrpUYSubGrpUXX˙Y
49 37 38 48 syl2anc φXX˙Y
50 1 3 4 2 8 9 44 mapdord φMXMX˙YXX˙Y
51 49 50 mpbird φMXMX˙Y
52 5 lsmub2 XSubGrpUYSubGrpUYX˙Y
53 37 38 52 syl2anc φYX˙Y
54 1 3 4 2 8 10 44 mapdord φMYMX˙YYX˙Y
55 53 54 mpbird φMYMX˙Y
56 1 2 3 4 6 12 8 44 mapdcl2 φMX˙YLSubSpC
57 14 56 sseldd φMX˙YSubGrpC
58 7 lsmlub MXSubGrpCMYSubGrpCMX˙YSubGrpCMXMX˙YMYMX˙YMX˙MYMX˙Y
59 16 18 57 58 syl3anc φMXMX˙YMYMX˙YMX˙MYMX˙Y
60 51 55 59 mpbi2and φMX˙MYMX˙Y
61 47 60 eqssd φMX˙Y=MX˙MY