| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapd0.h |
|
| 2 |
|
mapd0.m |
|
| 3 |
|
mapd0.u |
|
| 4 |
|
mapd0.o |
|
| 5 |
|
mapd0.c |
|
| 6 |
|
mapd0.z |
|
| 7 |
|
mapd0.k |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
1 3 7
|
dvhlmod |
|
| 13 |
4 8
|
lsssn0 |
|
| 14 |
12 13
|
syl |
|
| 15 |
1 3 8 9 10 11 2 7 14
|
mapdval |
|
| 16 |
|
simprrr |
|
| 17 |
12
|
adantr |
|
| 18 |
7
|
adantr |
|
| 19 |
|
eqid |
|
| 20 |
|
simprl |
|
| 21 |
19 9 10 17 20
|
lkrssv |
|
| 22 |
1 3 19 8 11
|
dochlss |
|
| 23 |
18 21 22
|
syl2anc |
|
| 24 |
4 8
|
lssle0 |
|
| 25 |
17 23 24
|
syl2anc |
|
| 26 |
16 25
|
mpbid |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
simprrl |
|
| 29 |
1 3 11 19 4
|
doch0 |
|
| 30 |
7 29
|
syl |
|
| 31 |
30
|
adantr |
|
| 32 |
27 28 31
|
3eqtr3d |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
33 34 19 9 10
|
lkr0f |
|
| 36 |
17 20 35
|
syl2anc |
|
| 37 |
32 36
|
mpbid |
|
| 38 |
1 3 19 33 34 5 6 7
|
lcd0v |
|
| 39 |
38
|
adantr |
|
| 40 |
37 39
|
eqtr4d |
|
| 41 |
40
|
ex |
|
| 42 |
|
eqid |
|
| 43 |
1 5 42 6 7
|
lcd0vcl |
|
| 44 |
1 5 42 3 9 7 43
|
lcdvbaselfl |
|
| 45 |
33 34 19 9 10
|
lkr0f |
|
| 46 |
12 44 45
|
syl2anc |
|
| 47 |
38 46
|
mpbird |
|
| 48 |
47
|
fveq2d |
|
| 49 |
48
|
fveq2d |
|
| 50 |
1 3 11 19 7
|
dochoc1 |
|
| 51 |
49 50
|
eqtrd |
|
| 52 |
51 47
|
eqtr4d |
|
| 53 |
1 3 11 19 4
|
doch1 |
|
| 54 |
7 53
|
syl |
|
| 55 |
48 54
|
eqtrd |
|
| 56 |
|
eqimss |
|
| 57 |
55 56
|
syl |
|
| 58 |
44 52 57
|
jca32 |
|
| 59 |
|
eleq1 |
|
| 60 |
|
2fveq3 |
|
| 61 |
60
|
fveq2d |
|
| 62 |
|
fveq2 |
|
| 63 |
61 62
|
eqeq12d |
|
| 64 |
60
|
sseq1d |
|
| 65 |
63 64
|
anbi12d |
|
| 66 |
59 65
|
anbi12d |
|
| 67 |
58 66
|
syl5ibrcom |
|
| 68 |
41 67
|
impbid |
|
| 69 |
|
2fveq3 |
|
| 70 |
69
|
fveq2d |
|
| 71 |
|
fveq2 |
|
| 72 |
70 71
|
eqeq12d |
|
| 73 |
69
|
sseq1d |
|
| 74 |
72 73
|
anbi12d |
|
| 75 |
74
|
elrab |
|
| 76 |
|
velsn |
|
| 77 |
68 75 76
|
3bitr4g |
|
| 78 |
77
|
eqrdv |
|
| 79 |
15 78
|
eqtrd |
|