Metamath Proof Explorer


Theorem mapdcnvatN

Description: Atoms are preserved by the map defined by df-mapd . (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdat.h H = LHyp K
mapdat.m M = mapd K W
mapdat.u U = DVecH K W
mapdat.a A = LSAtoms U
mapdat.c C = LCDual K W
mapdat.b B = LSAtoms C
mapdat.k φ K HL W H
mapdcnvat.q φ Q B
Assertion mapdcnvatN φ M -1 Q A

Proof

Step Hyp Ref Expression
1 mapdat.h H = LHyp K
2 mapdat.m M = mapd K W
3 mapdat.u U = DVecH K W
4 mapdat.a A = LSAtoms U
5 mapdat.c C = LCDual K W
6 mapdat.b B = LSAtoms C
7 mapdat.k φ K HL W H
8 mapdcnvat.q φ Q B
9 eqid LSubSp U = LSubSp U
10 1 3 7 dvhlmod φ U LMod
11 eqid 0 U = 0 U
12 11 9 lsssn0 U LMod 0 U LSubSp U
13 10 12 syl φ 0 U LSubSp U
14 1 2 3 9 7 13 mapdcnvid1N φ M -1 M 0 U = 0 U
15 eqid 0 C = 0 C
16 1 2 3 11 5 15 7 mapd0 φ M 0 U = 0 C
17 16 fveq2d φ M -1 M 0 U = M -1 0 C
18 14 17 eqtr3d φ 0 U = M -1 0 C
19 eqid L C = L C
20 1 5 7 lcdlvec φ C LVec
21 15 6 19 20 8 lsatcv0 φ 0 C L C Q
22 1 5 7 lcdlmod φ C LMod
23 eqid LSubSp C = LSubSp C
24 15 23 lsssn0 C LMod 0 C LSubSp C
25 22 24 syl φ 0 C LSubSp C
26 1 2 5 23 7 mapdrn2 φ ran M = LSubSp C
27 25 26 eleqtrrd φ 0 C ran M
28 1 2 7 27 mapdcnvid2 φ M M -1 0 C = 0 C
29 23 6 22 8 lsatlssel φ Q LSubSp C
30 29 26 eleqtrrd φ Q ran M
31 1 2 7 30 mapdcnvid2 φ M M -1 Q = Q
32 21 28 31 3brtr4d φ M M -1 0 C L C M M -1 Q
33 eqid L U = L U
34 1 2 3 9 7 27 mapdcnvcl φ M -1 0 C LSubSp U
35 1 2 3 9 7 30 mapdcnvcl φ M -1 Q LSubSp U
36 1 2 3 9 33 5 19 7 34 35 mapdcv φ M -1 0 C L U M -1 Q M M -1 0 C L C M M -1 Q
37 32 36 mpbird φ M -1 0 C L U M -1 Q
38 18 37 eqbrtrd φ 0 U L U M -1 Q
39 1 3 7 dvhlvec φ U LVec
40 11 9 4 33 39 35 lsat0cv φ M -1 Q A 0 U L U M -1 Q
41 38 40 mpbird φ M -1 Q A