Metamath Proof Explorer


Theorem mapdcnvatN

Description: Atoms are preserved by the map defined by df-mapd . (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdat.h H=LHypK
mapdat.m M=mapdKW
mapdat.u U=DVecHKW
mapdat.a A=LSAtomsU
mapdat.c C=LCDualKW
mapdat.b B=LSAtomsC
mapdat.k φKHLWH
mapdcnvat.q φQB
Assertion mapdcnvatN φM-1QA

Proof

Step Hyp Ref Expression
1 mapdat.h H=LHypK
2 mapdat.m M=mapdKW
3 mapdat.u U=DVecHKW
4 mapdat.a A=LSAtomsU
5 mapdat.c C=LCDualKW
6 mapdat.b B=LSAtomsC
7 mapdat.k φKHLWH
8 mapdcnvat.q φQB
9 eqid LSubSpU=LSubSpU
10 1 3 7 dvhlmod φULMod
11 eqid 0U=0U
12 11 9 lsssn0 ULMod0ULSubSpU
13 10 12 syl φ0ULSubSpU
14 1 2 3 9 7 13 mapdcnvid1N φM-1M0U=0U
15 eqid 0C=0C
16 1 2 3 11 5 15 7 mapd0 φM0U=0C
17 16 fveq2d φM-1M0U=M-10C
18 14 17 eqtr3d φ0U=M-10C
19 eqid LC=LC
20 1 5 7 lcdlvec φCLVec
21 15 6 19 20 8 lsatcv0 φ0CLCQ
22 1 5 7 lcdlmod φCLMod
23 eqid LSubSpC=LSubSpC
24 15 23 lsssn0 CLMod0CLSubSpC
25 22 24 syl φ0CLSubSpC
26 1 2 5 23 7 mapdrn2 φranM=LSubSpC
27 25 26 eleqtrrd φ0CranM
28 1 2 7 27 mapdcnvid2 φMM-10C=0C
29 23 6 22 8 lsatlssel φQLSubSpC
30 29 26 eleqtrrd φQranM
31 1 2 7 30 mapdcnvid2 φMM-1Q=Q
32 21 28 31 3brtr4d φMM-10CLCMM-1Q
33 eqid LU=LU
34 1 2 3 9 7 27 mapdcnvcl φM-10CLSubSpU
35 1 2 3 9 7 30 mapdcnvcl φM-1QLSubSpU
36 1 2 3 9 33 5 19 7 34 35 mapdcv φM-10CLUM-1QMM-10CLCMM-1Q
37 32 36 mpbird φM-10CLUM-1Q
38 18 37 eqbrtrd φ0ULUM-1Q
39 1 3 7 dvhlvec φULVec
40 11 9 4 33 39 35 lsat0cv φM-1QA0ULUM-1Q
41 38 40 mpbird φM-1QA