| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdat.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdat.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdat.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdat.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 5 |  | mapdat.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | mapdat.b | ⊢ 𝐵  =  ( LSAtoms ‘ 𝐶 ) | 
						
							| 7 |  | mapdat.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 |  | mapdcnvat.q | ⊢ ( 𝜑  →  𝑄  ∈  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 10 | 1 3 7 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 12 | 11 9 | lsssn0 | ⊢ ( 𝑈  ∈  LMod  →  { ( 0g ‘ 𝑈 ) }  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝜑  →  { ( 0g ‘ 𝑈 ) }  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 14 | 1 2 3 9 7 13 | mapdcnvid1N | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) )  =  { ( 0g ‘ 𝑈 ) } ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 16 | 1 2 3 11 5 15 7 | mapd0 | ⊢ ( 𝜑  →  ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } )  =  { ( 0g ‘ 𝐶 ) } ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) )  =  ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 18 | 14 17 | eqtr3d | ⊢ ( 𝜑  →  { ( 0g ‘ 𝑈 ) }  =  ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 19 |  | eqid | ⊢ (  ⋖L  ‘ 𝐶 )  =  (  ⋖L  ‘ 𝐶 ) | 
						
							| 20 | 1 5 7 | lcdlvec | ⊢ ( 𝜑  →  𝐶  ∈  LVec ) | 
						
							| 21 | 15 6 19 20 8 | lsatcv0 | ⊢ ( 𝜑  →  { ( 0g ‘ 𝐶 ) } (  ⋖L  ‘ 𝐶 ) 𝑄 ) | 
						
							| 22 | 1 5 7 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 23 |  | eqid | ⊢ ( LSubSp ‘ 𝐶 )  =  ( LSubSp ‘ 𝐶 ) | 
						
							| 24 | 15 23 | lsssn0 | ⊢ ( 𝐶  ∈  LMod  →  { ( 0g ‘ 𝐶 ) }  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 25 | 22 24 | syl | ⊢ ( 𝜑  →  { ( 0g ‘ 𝐶 ) }  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 26 | 1 2 5 23 7 | mapdrn2 | ⊢ ( 𝜑  →  ran  𝑀  =  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 27 | 25 26 | eleqtrrd | ⊢ ( 𝜑  →  { ( 0g ‘ 𝐶 ) }  ∈  ran  𝑀 ) | 
						
							| 28 | 1 2 7 27 | mapdcnvid2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) )  =  { ( 0g ‘ 𝐶 ) } ) | 
						
							| 29 | 23 6 22 8 | lsatlssel | ⊢ ( 𝜑  →  𝑄  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 30 | 29 26 | eleqtrrd | ⊢ ( 𝜑  →  𝑄  ∈  ran  𝑀 ) | 
						
							| 31 | 1 2 7 30 | mapdcnvid2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑄 ) )  =  𝑄 ) | 
						
							| 32 | 21 28 31 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) (  ⋖L  ‘ 𝐶 ) ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 33 |  | eqid | ⊢ (  ⋖L  ‘ 𝑈 )  =  (  ⋖L  ‘ 𝑈 ) | 
						
							| 34 | 1 2 3 9 7 27 | mapdcnvcl | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 35 | 1 2 3 9 7 30 | mapdcnvcl | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ 𝑄 )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 36 | 1 2 3 9 33 5 19 7 34 35 | mapdcv | ⊢ ( 𝜑  →  ( ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) (  ⋖L  ‘ 𝑈 ) ( ◡ 𝑀 ‘ 𝑄 )  ↔  ( 𝑀 ‘ ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) (  ⋖L  ‘ 𝐶 ) ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑄 ) ) ) ) | 
						
							| 37 | 32 36 | mpbird | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) (  ⋖L  ‘ 𝑈 ) ( ◡ 𝑀 ‘ 𝑄 ) ) | 
						
							| 38 | 18 37 | eqbrtrd | ⊢ ( 𝜑  →  { ( 0g ‘ 𝑈 ) } (  ⋖L  ‘ 𝑈 ) ( ◡ 𝑀 ‘ 𝑄 ) ) | 
						
							| 39 | 1 3 7 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 40 | 11 9 4 33 39 35 | lsat0cv | ⊢ ( 𝜑  →  ( ( ◡ 𝑀 ‘ 𝑄 )  ∈  𝐴  ↔  { ( 0g ‘ 𝑈 ) } (  ⋖L  ‘ 𝑈 ) ( ◡ 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 41 | 38 40 | mpbird | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ 𝑄 )  ∈  𝐴 ) |