Metamath Proof Explorer


Theorem mapdcnvatN

Description: Atoms are preserved by the map defined by df-mapd . (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdat.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdat.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
mapdat.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdat.b 𝐵 = ( LSAtoms ‘ 𝐶 )
mapdat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdcnvat.q ( 𝜑𝑄𝐵 )
Assertion mapdcnvatN ( 𝜑 → ( 𝑀𝑄 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 mapdat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdat.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
5 mapdat.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 mapdat.b 𝐵 = ( LSAtoms ‘ 𝐶 )
7 mapdat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 mapdcnvat.q ( 𝜑𝑄𝐵 )
9 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
10 1 3 7 dvhlmod ( 𝜑𝑈 ∈ LMod )
11 eqid ( 0g𝑈 ) = ( 0g𝑈 )
12 11 9 lsssn0 ( 𝑈 ∈ LMod → { ( 0g𝑈 ) } ∈ ( LSubSp ‘ 𝑈 ) )
13 10 12 syl ( 𝜑 → { ( 0g𝑈 ) } ∈ ( LSubSp ‘ 𝑈 ) )
14 1 2 3 9 7 13 mapdcnvid1N ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ { ( 0g𝑈 ) } ) ) = { ( 0g𝑈 ) } )
15 eqid ( 0g𝐶 ) = ( 0g𝐶 )
16 1 2 3 11 5 15 7 mapd0 ( 𝜑 → ( 𝑀 ‘ { ( 0g𝑈 ) } ) = { ( 0g𝐶 ) } )
17 16 fveq2d ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ { ( 0g𝑈 ) } ) ) = ( 𝑀 ‘ { ( 0g𝐶 ) } ) )
18 14 17 eqtr3d ( 𝜑 → { ( 0g𝑈 ) } = ( 𝑀 ‘ { ( 0g𝐶 ) } ) )
19 eqid ( ⋖L𝐶 ) = ( ⋖L𝐶 )
20 1 5 7 lcdlvec ( 𝜑𝐶 ∈ LVec )
21 15 6 19 20 8 lsatcv0 ( 𝜑 → { ( 0g𝐶 ) } ( ⋖L𝐶 ) 𝑄 )
22 1 5 7 lcdlmod ( 𝜑𝐶 ∈ LMod )
23 eqid ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 )
24 15 23 lsssn0 ( 𝐶 ∈ LMod → { ( 0g𝐶 ) } ∈ ( LSubSp ‘ 𝐶 ) )
25 22 24 syl ( 𝜑 → { ( 0g𝐶 ) } ∈ ( LSubSp ‘ 𝐶 ) )
26 1 2 5 23 7 mapdrn2 ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐶 ) )
27 25 26 eleqtrrd ( 𝜑 → { ( 0g𝐶 ) } ∈ ran 𝑀 )
28 1 2 7 27 mapdcnvid2 ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ { ( 0g𝐶 ) } ) ) = { ( 0g𝐶 ) } )
29 23 6 22 8 lsatlssel ( 𝜑𝑄 ∈ ( LSubSp ‘ 𝐶 ) )
30 29 26 eleqtrrd ( 𝜑𝑄 ∈ ran 𝑀 )
31 1 2 7 30 mapdcnvid2 ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝑄 ) ) = 𝑄 )
32 21 28 31 3brtr4d ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ { ( 0g𝐶 ) } ) ) ( ⋖L𝐶 ) ( 𝑀 ‘ ( 𝑀𝑄 ) ) )
33 eqid ( ⋖L𝑈 ) = ( ⋖L𝑈 )
34 1 2 3 9 7 27 mapdcnvcl ( 𝜑 → ( 𝑀 ‘ { ( 0g𝐶 ) } ) ∈ ( LSubSp ‘ 𝑈 ) )
35 1 2 3 9 7 30 mapdcnvcl ( 𝜑 → ( 𝑀𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
36 1 2 3 9 33 5 19 7 34 35 mapdcv ( 𝜑 → ( ( 𝑀 ‘ { ( 0g𝐶 ) } ) ( ⋖L𝑈 ) ( 𝑀𝑄 ) ↔ ( 𝑀 ‘ ( 𝑀 ‘ { ( 0g𝐶 ) } ) ) ( ⋖L𝐶 ) ( 𝑀 ‘ ( 𝑀𝑄 ) ) ) )
37 32 36 mpbird ( 𝜑 → ( 𝑀 ‘ { ( 0g𝐶 ) } ) ( ⋖L𝑈 ) ( 𝑀𝑄 ) )
38 18 37 eqbrtrd ( 𝜑 → { ( 0g𝑈 ) } ( ⋖L𝑈 ) ( 𝑀𝑄 ) )
39 1 3 7 dvhlvec ( 𝜑𝑈 ∈ LVec )
40 11 9 4 33 39 35 lsat0cv ( 𝜑 → ( ( 𝑀𝑄 ) ∈ 𝐴 ↔ { ( 0g𝑈 ) } ( ⋖L𝑈 ) ( 𝑀𝑄 ) ) )
41 38 40 mpbird ( 𝜑 → ( 𝑀𝑄 ) ∈ 𝐴 )