Step |
Hyp |
Ref |
Expression |
1 |
|
mapdat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdat.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
mapdat.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
mapdat.b |
⊢ 𝐵 = ( LSAtoms ‘ 𝐶 ) |
7 |
|
mapdat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
mapdcnvat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
10 |
1 3 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
12 |
11 9
|
lsssn0 |
⊢ ( 𝑈 ∈ LMod → { ( 0g ‘ 𝑈 ) } ∈ ( LSubSp ‘ 𝑈 ) ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } ∈ ( LSubSp ‘ 𝑈 ) ) |
14 |
1 2 3 9 7 13
|
mapdcnvid1N |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) ) = { ( 0g ‘ 𝑈 ) } ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
16 |
1 2 3 11 5 15 7
|
mapd0 |
⊢ ( 𝜑 → ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝐶 ) } ) |
17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) ) = ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) |
18 |
14 17
|
eqtr3d |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } = ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) |
19 |
|
eqid |
⊢ ( ⋖L ‘ 𝐶 ) = ( ⋖L ‘ 𝐶 ) |
20 |
1 5 7
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
21 |
15 6 19 20 8
|
lsatcv0 |
⊢ ( 𝜑 → { ( 0g ‘ 𝐶 ) } ( ⋖L ‘ 𝐶 ) 𝑄 ) |
22 |
1 5 7
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
23 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
24 |
15 23
|
lsssn0 |
⊢ ( 𝐶 ∈ LMod → { ( 0g ‘ 𝐶 ) } ∈ ( LSubSp ‘ 𝐶 ) ) |
25 |
22 24
|
syl |
⊢ ( 𝜑 → { ( 0g ‘ 𝐶 ) } ∈ ( LSubSp ‘ 𝐶 ) ) |
26 |
1 2 5 23 7
|
mapdrn2 |
⊢ ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐶 ) ) |
27 |
25 26
|
eleqtrrd |
⊢ ( 𝜑 → { ( 0g ‘ 𝐶 ) } ∈ ran 𝑀 ) |
28 |
1 2 7 27
|
mapdcnvid2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) = { ( 0g ‘ 𝐶 ) } ) |
29 |
23 6 22 8
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝐶 ) ) |
30 |
29 26
|
eleqtrrd |
⊢ ( 𝜑 → 𝑄 ∈ ran 𝑀 ) |
31 |
1 2 7 30
|
mapdcnvid2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑄 ) ) = 𝑄 ) |
32 |
21 28 31
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) ( ⋖L ‘ 𝐶 ) ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑄 ) ) ) |
33 |
|
eqid |
⊢ ( ⋖L ‘ 𝑈 ) = ( ⋖L ‘ 𝑈 ) |
34 |
1 2 3 9 7 27
|
mapdcnvcl |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
35 |
1 2 3 9 7 30
|
mapdcnvcl |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
36 |
1 2 3 9 33 5 19 7 34 35
|
mapdcv |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ( ⋖L ‘ 𝑈 ) ( ◡ 𝑀 ‘ 𝑄 ) ↔ ( 𝑀 ‘ ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ) ( ⋖L ‘ 𝐶 ) ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑄 ) ) ) ) |
37 |
32 36
|
mpbird |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ { ( 0g ‘ 𝐶 ) } ) ( ⋖L ‘ 𝑈 ) ( ◡ 𝑀 ‘ 𝑄 ) ) |
38 |
18 37
|
eqbrtrd |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } ( ⋖L ‘ 𝑈 ) ( ◡ 𝑀 ‘ 𝑄 ) ) |
39 |
1 3 7
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
40 |
11 9 4 33 39 35
|
lsat0cv |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ 𝑄 ) ∈ 𝐴 ↔ { ( 0g ‘ 𝑈 ) } ( ⋖L ‘ 𝑈 ) ( ◡ 𝑀 ‘ 𝑄 ) ) ) |
41 |
38 40
|
mpbird |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ 𝑄 ) ∈ 𝐴 ) |