Step |
Hyp |
Ref |
Expression |
1 |
|
mapdat.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdat.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdat.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdat.a |
|- A = ( LSAtoms ` U ) |
5 |
|
mapdat.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
mapdat.b |
|- B = ( LSAtoms ` C ) |
7 |
|
mapdat.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
mapdcnvat.q |
|- ( ph -> Q e. B ) |
9 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
10 |
1 3 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
11 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
12 |
11 9
|
lsssn0 |
|- ( U e. LMod -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) |
13 |
10 12
|
syl |
|- ( ph -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) |
14 |
1 2 3 9 7 13
|
mapdcnvid1N |
|- ( ph -> ( `' M ` ( M ` { ( 0g ` U ) } ) ) = { ( 0g ` U ) } ) |
15 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
16 |
1 2 3 11 5 15 7
|
mapd0 |
|- ( ph -> ( M ` { ( 0g ` U ) } ) = { ( 0g ` C ) } ) |
17 |
16
|
fveq2d |
|- ( ph -> ( `' M ` ( M ` { ( 0g ` U ) } ) ) = ( `' M ` { ( 0g ` C ) } ) ) |
18 |
14 17
|
eqtr3d |
|- ( ph -> { ( 0g ` U ) } = ( `' M ` { ( 0g ` C ) } ) ) |
19 |
|
eqid |
|- (
|
20 |
1 5 7
|
lcdlvec |
|- ( ph -> C e. LVec ) |
21 |
15 6 19 20 8
|
lsatcv0 |
|- ( ph -> { ( 0g ` C ) } (
|
22 |
1 5 7
|
lcdlmod |
|- ( ph -> C e. LMod ) |
23 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
24 |
15 23
|
lsssn0 |
|- ( C e. LMod -> { ( 0g ` C ) } e. ( LSubSp ` C ) ) |
25 |
22 24
|
syl |
|- ( ph -> { ( 0g ` C ) } e. ( LSubSp ` C ) ) |
26 |
1 2 5 23 7
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` C ) ) |
27 |
25 26
|
eleqtrrd |
|- ( ph -> { ( 0g ` C ) } e. ran M ) |
28 |
1 2 7 27
|
mapdcnvid2 |
|- ( ph -> ( M ` ( `' M ` { ( 0g ` C ) } ) ) = { ( 0g ` C ) } ) |
29 |
23 6 22 8
|
lsatlssel |
|- ( ph -> Q e. ( LSubSp ` C ) ) |
30 |
29 26
|
eleqtrrd |
|- ( ph -> Q e. ran M ) |
31 |
1 2 7 30
|
mapdcnvid2 |
|- ( ph -> ( M ` ( `' M ` Q ) ) = Q ) |
32 |
21 28 31
|
3brtr4d |
|- ( ph -> ( M ` ( `' M ` { ( 0g ` C ) } ) ) (
|
33 |
|
eqid |
|- (
|
34 |
1 2 3 9 7 27
|
mapdcnvcl |
|- ( ph -> ( `' M ` { ( 0g ` C ) } ) e. ( LSubSp ` U ) ) |
35 |
1 2 3 9 7 30
|
mapdcnvcl |
|- ( ph -> ( `' M ` Q ) e. ( LSubSp ` U ) ) |
36 |
1 2 3 9 33 5 19 7 34 35
|
mapdcv |
|- ( ph -> ( ( `' M ` { ( 0g ` C ) } ) ( ( M ` ( `' M ` { ( 0g ` C ) } ) ) (
|
37 |
32 36
|
mpbird |
|- ( ph -> ( `' M ` { ( 0g ` C ) } ) (
|
38 |
18 37
|
eqbrtrd |
|- ( ph -> { ( 0g ` U ) } (
|
39 |
1 3 7
|
dvhlvec |
|- ( ph -> U e. LVec ) |
40 |
11 9 4 33 39 35
|
lsat0cv |
|- ( ph -> ( ( `' M ` Q ) e. A <-> { ( 0g ` U ) } (
|
41 |
38 40
|
mpbird |
|- ( ph -> ( `' M ` Q ) e. A ) |