Metamath Proof Explorer


Theorem mapdcnvatN

Description: Atoms are preserved by the map defined by df-mapd . (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdat.h
|- H = ( LHyp ` K )
mapdat.m
|- M = ( ( mapd ` K ) ` W )
mapdat.u
|- U = ( ( DVecH ` K ) ` W )
mapdat.a
|- A = ( LSAtoms ` U )
mapdat.c
|- C = ( ( LCDual ` K ) ` W )
mapdat.b
|- B = ( LSAtoms ` C )
mapdat.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdcnvat.q
|- ( ph -> Q e. B )
Assertion mapdcnvatN
|- ( ph -> ( `' M ` Q ) e. A )

Proof

Step Hyp Ref Expression
1 mapdat.h
 |-  H = ( LHyp ` K )
2 mapdat.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdat.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdat.a
 |-  A = ( LSAtoms ` U )
5 mapdat.c
 |-  C = ( ( LCDual ` K ) ` W )
6 mapdat.b
 |-  B = ( LSAtoms ` C )
7 mapdat.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 mapdcnvat.q
 |-  ( ph -> Q e. B )
9 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
10 1 3 7 dvhlmod
 |-  ( ph -> U e. LMod )
11 eqid
 |-  ( 0g ` U ) = ( 0g ` U )
12 11 9 lsssn0
 |-  ( U e. LMod -> { ( 0g ` U ) } e. ( LSubSp ` U ) )
13 10 12 syl
 |-  ( ph -> { ( 0g ` U ) } e. ( LSubSp ` U ) )
14 1 2 3 9 7 13 mapdcnvid1N
 |-  ( ph -> ( `' M ` ( M ` { ( 0g ` U ) } ) ) = { ( 0g ` U ) } )
15 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
16 1 2 3 11 5 15 7 mapd0
 |-  ( ph -> ( M ` { ( 0g ` U ) } ) = { ( 0g ` C ) } )
17 16 fveq2d
 |-  ( ph -> ( `' M ` ( M ` { ( 0g ` U ) } ) ) = ( `' M ` { ( 0g ` C ) } ) )
18 14 17 eqtr3d
 |-  ( ph -> { ( 0g ` U ) } = ( `' M ` { ( 0g ` C ) } ) )
19 eqid
 |-  ( 
    20 1 5 7 lcdlvec
     |-  ( ph -> C e. LVec )
    21 15 6 19 20 8 lsatcv0
     |-  ( ph -> { ( 0g ` C ) } ( 
      22 1 5 7 lcdlmod
       |-  ( ph -> C e. LMod )
      23 eqid
       |-  ( LSubSp ` C ) = ( LSubSp ` C )
      24 15 23 lsssn0
       |-  ( C e. LMod -> { ( 0g ` C ) } e. ( LSubSp ` C ) )
      25 22 24 syl
       |-  ( ph -> { ( 0g ` C ) } e. ( LSubSp ` C ) )
      26 1 2 5 23 7 mapdrn2
       |-  ( ph -> ran M = ( LSubSp ` C ) )
      27 25 26 eleqtrrd
       |-  ( ph -> { ( 0g ` C ) } e. ran M )
      28 1 2 7 27 mapdcnvid2
       |-  ( ph -> ( M ` ( `' M ` { ( 0g ` C ) } ) ) = { ( 0g ` C ) } )
      29 23 6 22 8 lsatlssel
       |-  ( ph -> Q e. ( LSubSp ` C ) )
      30 29 26 eleqtrrd
       |-  ( ph -> Q e. ran M )
      31 1 2 7 30 mapdcnvid2
       |-  ( ph -> ( M ` ( `' M ` Q ) ) = Q )
      32 21 28 31 3brtr4d
       |-  ( ph -> ( M ` ( `' M ` { ( 0g ` C ) } ) ) ( 
        33 eqid
         |-  ( 
          34 1 2 3 9 7 27 mapdcnvcl
           |-  ( ph -> ( `' M ` { ( 0g ` C ) } ) e. ( LSubSp ` U ) )
          35 1 2 3 9 7 30 mapdcnvcl
           |-  ( ph -> ( `' M ` Q ) e. ( LSubSp ` U ) )
          36 1 2 3 9 33 5 19 7 34 35 mapdcv
           |-  ( ph -> ( ( `' M ` { ( 0g ` C ) } ) ( 
            ( M ` ( `' M ` { ( 0g ` C ) } ) ) (
            37 32 36 mpbird
             |-  ( ph -> ( `' M ` { ( 0g ` C ) } ) ( 
              38 18 37 eqbrtrd
               |-  ( ph -> { ( 0g ` U ) } ( 
                39 1 3 7 dvhlvec
                 |-  ( ph -> U e. LVec )
                40 11 9 4 33 39 35 lsat0cv
                 |-  ( ph -> ( ( `' M ` Q ) e. A <-> { ( 0g ` U ) } ( 
                  41 38 40 mpbird
                   |-  ( ph -> ( `' M ` Q ) e. A )