| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdat.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdat.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdat.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdat.a |  |-  A = ( LSAtoms ` U ) | 
						
							| 5 |  | mapdat.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | mapdat.b |  |-  B = ( LSAtoms ` C ) | 
						
							| 7 |  | mapdat.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 8 |  | mapdcnvat.q |  |-  ( ph -> Q e. B ) | 
						
							| 9 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 10 | 1 3 7 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 11 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 12 | 11 9 | lsssn0 |  |-  ( U e. LMod -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ph -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) | 
						
							| 14 | 1 2 3 9 7 13 | mapdcnvid1N |  |-  ( ph -> ( `' M ` ( M ` { ( 0g ` U ) } ) ) = { ( 0g ` U ) } ) | 
						
							| 15 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 16 | 1 2 3 11 5 15 7 | mapd0 |  |-  ( ph -> ( M ` { ( 0g ` U ) } ) = { ( 0g ` C ) } ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ph -> ( `' M ` ( M ` { ( 0g ` U ) } ) ) = ( `' M ` { ( 0g ` C ) } ) ) | 
						
							| 18 | 14 17 | eqtr3d |  |-  ( ph -> { ( 0g ` U ) } = ( `' M ` { ( 0g ` C ) } ) ) | 
						
							| 19 |  | eqid |  |-  ( 
 | 
						
							| 20 | 1 5 7 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 21 | 15 6 19 20 8 | lsatcv0 |  |-  ( ph -> { ( 0g ` C ) } ( 
 | 
						
							| 22 | 1 5 7 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 23 |  | eqid |  |-  ( LSubSp ` C ) = ( LSubSp ` C ) | 
						
							| 24 | 15 23 | lsssn0 |  |-  ( C e. LMod -> { ( 0g ` C ) } e. ( LSubSp ` C ) ) | 
						
							| 25 | 22 24 | syl |  |-  ( ph -> { ( 0g ` C ) } e. ( LSubSp ` C ) ) | 
						
							| 26 | 1 2 5 23 7 | mapdrn2 |  |-  ( ph -> ran M = ( LSubSp ` C ) ) | 
						
							| 27 | 25 26 | eleqtrrd |  |-  ( ph -> { ( 0g ` C ) } e. ran M ) | 
						
							| 28 | 1 2 7 27 | mapdcnvid2 |  |-  ( ph -> ( M ` ( `' M ` { ( 0g ` C ) } ) ) = { ( 0g ` C ) } ) | 
						
							| 29 | 23 6 22 8 | lsatlssel |  |-  ( ph -> Q e. ( LSubSp ` C ) ) | 
						
							| 30 | 29 26 | eleqtrrd |  |-  ( ph -> Q e. ran M ) | 
						
							| 31 | 1 2 7 30 | mapdcnvid2 |  |-  ( ph -> ( M ` ( `' M ` Q ) ) = Q ) | 
						
							| 32 | 21 28 31 | 3brtr4d |  |-  ( ph -> ( M ` ( `' M ` { ( 0g ` C ) } ) ) ( 
 | 
						
							| 33 |  | eqid |  |-  ( 
 | 
						
							| 34 | 1 2 3 9 7 27 | mapdcnvcl |  |-  ( ph -> ( `' M ` { ( 0g ` C ) } ) e. ( LSubSp ` U ) ) | 
						
							| 35 | 1 2 3 9 7 30 | mapdcnvcl |  |-  ( ph -> ( `' M ` Q ) e. ( LSubSp ` U ) ) | 
						
							| 36 | 1 2 3 9 33 5 19 7 34 35 | mapdcv |  |-  ( ph -> ( ( `' M ` { ( 0g ` C ) } ) (  ( M ` ( `' M ` { ( 0g ` C ) } ) ) ( 
 | 
						
							| 37 | 32 36 | mpbird |  |-  ( ph -> ( `' M ` { ( 0g ` C ) } ) ( 
 | 
						
							| 38 | 18 37 | eqbrtrd |  |-  ( ph -> { ( 0g ` U ) } ( 
 | 
						
							| 39 | 1 3 7 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 40 | 11 9 4 33 39 35 | lsat0cv |  |-  ( ph -> ( ( `' M ` Q ) e. A <-> { ( 0g ` U ) } ( 
 | 
						
							| 41 | 38 40 | mpbird |  |-  ( ph -> ( `' M ` Q ) e. A ) |