Step |
Hyp |
Ref |
Expression |
1 |
|
mapdat.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdat.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdat.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdat.a |
|- A = ( LSAtoms ` U ) |
5 |
|
mapdat.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
mapdat.b |
|- B = ( LSAtoms ` C ) |
7 |
|
mapdat.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
mapdat.q |
|- ( ph -> Q e. A ) |
9 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
10 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
11 |
1 2 3 9 5 10 7
|
mapd0 |
|- ( ph -> ( M ` { ( 0g ` U ) } ) = { ( 0g ` C ) } ) |
12 |
|
eqid |
|- (
|
13 |
1 3 7
|
dvhlvec |
|- ( ph -> U e. LVec ) |
14 |
9 4 12 13 8
|
lsatcv0 |
|- ( ph -> { ( 0g ` U ) } (
|
15 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
16 |
|
eqid |
|- (
|
17 |
1 3 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
18 |
9 15
|
lsssn0 |
|- ( U e. LMod -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) |
19 |
17 18
|
syl |
|- ( ph -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) |
20 |
15 4 17 8
|
lsatlssel |
|- ( ph -> Q e. ( LSubSp ` U ) ) |
21 |
1 2 3 15 12 5 16 7 19 20
|
mapdcv |
|- ( ph -> ( { ( 0g ` U ) } ( ( M ` { ( 0g ` U ) } ) (
|
22 |
14 21
|
mpbid |
|- ( ph -> ( M ` { ( 0g ` U ) } ) (
|
23 |
11 22
|
eqbrtrrd |
|- ( ph -> { ( 0g ` C ) } (
|
24 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
25 |
1 5 7
|
lcdlvec |
|- ( ph -> C e. LVec ) |
26 |
1 2 3 15 5 24 7 20
|
mapdcl2 |
|- ( ph -> ( M ` Q ) e. ( LSubSp ` C ) ) |
27 |
10 24 6 16 25 26
|
lsat0cv |
|- ( ph -> ( ( M ` Q ) e. B <-> { ( 0g ` C ) } (
|
28 |
23 27
|
mpbird |
|- ( ph -> ( M ` Q ) e. B ) |