| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdat.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdat.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdat.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdat.a |
|- A = ( LSAtoms ` U ) |
| 5 |
|
mapdat.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
mapdat.b |
|- B = ( LSAtoms ` C ) |
| 7 |
|
mapdat.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
mapdat.q |
|- ( ph -> Q e. A ) |
| 9 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 10 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
| 11 |
1 2 3 9 5 10 7
|
mapd0 |
|- ( ph -> ( M ` { ( 0g ` U ) } ) = { ( 0g ` C ) } ) |
| 12 |
|
eqid |
|- (
|
| 13 |
1 3 7
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 14 |
9 4 12 13 8
|
lsatcv0 |
|- ( ph -> { ( 0g ` U ) } (
|
| 15 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 16 |
|
eqid |
|- (
|
| 17 |
1 3 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 18 |
9 15
|
lsssn0 |
|- ( U e. LMod -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) |
| 19 |
17 18
|
syl |
|- ( ph -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) |
| 20 |
15 4 17 8
|
lsatlssel |
|- ( ph -> Q e. ( LSubSp ` U ) ) |
| 21 |
1 2 3 15 12 5 16 7 19 20
|
mapdcv |
|- ( ph -> ( { ( 0g ` U ) } ( ( M ` { ( 0g ` U ) } ) (
|
| 22 |
14 21
|
mpbid |
|- ( ph -> ( M ` { ( 0g ` U ) } ) (
|
| 23 |
11 22
|
eqbrtrrd |
|- ( ph -> { ( 0g ` C ) } (
|
| 24 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
| 25 |
1 5 7
|
lcdlvec |
|- ( ph -> C e. LVec ) |
| 26 |
1 2 3 15 5 24 7 20
|
mapdcl2 |
|- ( ph -> ( M ` Q ) e. ( LSubSp ` C ) ) |
| 27 |
10 24 6 16 25 26
|
lsat0cv |
|- ( ph -> ( ( M ` Q ) e. B <-> { ( 0g ` C ) } (
|
| 28 |
23 27
|
mpbird |
|- ( ph -> ( M ` Q ) e. B ) |