| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdat.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdat.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdat.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdat.a |  |-  A = ( LSAtoms ` U ) | 
						
							| 5 |  | mapdat.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | mapdat.b |  |-  B = ( LSAtoms ` C ) | 
						
							| 7 |  | mapdat.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 8 |  | mapdat.q |  |-  ( ph -> Q e. A ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 10 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 11 | 1 2 3 9 5 10 7 | mapd0 |  |-  ( ph -> ( M ` { ( 0g ` U ) } ) = { ( 0g ` C ) } ) | 
						
							| 12 |  | eqid |  |-  ( 
 | 
						
							| 13 | 1 3 7 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 14 | 9 4 12 13 8 | lsatcv0 |  |-  ( ph -> { ( 0g ` U ) } ( 
 | 
						
							| 15 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 16 |  | eqid |  |-  ( 
 | 
						
							| 17 | 1 3 7 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 18 | 9 15 | lsssn0 |  |-  ( U e. LMod -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> { ( 0g ` U ) } e. ( LSubSp ` U ) ) | 
						
							| 20 | 15 4 17 8 | lsatlssel |  |-  ( ph -> Q e. ( LSubSp ` U ) ) | 
						
							| 21 | 1 2 3 15 12 5 16 7 19 20 | mapdcv |  |-  ( ph -> ( { ( 0g ` U ) } (  ( M ` { ( 0g ` U ) } ) ( 
 | 
						
							| 22 | 14 21 | mpbid |  |-  ( ph -> ( M ` { ( 0g ` U ) } ) ( 
 | 
						
							| 23 | 11 22 | eqbrtrrd |  |-  ( ph -> { ( 0g ` C ) } ( 
 | 
						
							| 24 |  | eqid |  |-  ( LSubSp ` C ) = ( LSubSp ` C ) | 
						
							| 25 | 1 5 7 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 26 | 1 2 3 15 5 24 7 20 | mapdcl2 |  |-  ( ph -> ( M ` Q ) e. ( LSubSp ` C ) ) | 
						
							| 27 | 10 24 6 16 25 26 | lsat0cv |  |-  ( ph -> ( ( M ` Q ) e. B <-> { ( 0g ` C ) } ( 
 | 
						
							| 28 | 23 27 | mpbird |  |-  ( ph -> ( M ` Q ) e. B ) |