Step |
Hyp |
Ref |
Expression |
1 |
|
mapdspex.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdspex.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdspex.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdspex.v |
|- V = ( Base ` U ) |
5 |
|
mapdspex.n |
|- N = ( LSpan ` U ) |
6 |
|
mapdspex.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
mapdspex.b |
|- B = ( Base ` C ) |
8 |
|
mapdspex.j |
|- J = ( LSpan ` C ) |
9 |
|
mapdspex.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
mapdspex.x |
|- ( ph -> X e. V ) |
11 |
1 6 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
12 |
11
|
adantr |
|- ( ( ph /\ ( N ` { X } ) e. ( LSAtoms ` U ) ) -> C e. LMod ) |
13 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
14 |
|
eqid |
|- ( LSAtoms ` C ) = ( LSAtoms ` C ) |
15 |
9
|
adantr |
|- ( ( ph /\ ( N ` { X } ) e. ( LSAtoms ` U ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simpr |
|- ( ( ph /\ ( N ` { X } ) e. ( LSAtoms ` U ) ) -> ( N ` { X } ) e. ( LSAtoms ` U ) ) |
17 |
1 2 3 13 6 14 15 16
|
mapdat |
|- ( ( ph /\ ( N ` { X } ) e. ( LSAtoms ` U ) ) -> ( M ` ( N ` { X } ) ) e. ( LSAtoms ` C ) ) |
18 |
7 8 14
|
islsati |
|- ( ( C e. LMod /\ ( M ` ( N ` { X } ) ) e. ( LSAtoms ` C ) ) -> E. g e. B ( M ` ( N ` { X } ) ) = ( J ` { g } ) ) |
19 |
12 17 18
|
syl2anc |
|- ( ( ph /\ ( N ` { X } ) e. ( LSAtoms ` U ) ) -> E. g e. B ( M ` ( N ` { X } ) ) = ( J ` { g } ) ) |
20 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
21 |
1 6 7 20 9
|
lcd0vcl |
|- ( ph -> ( 0g ` C ) e. B ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = { ( 0g ` U ) } ) -> ( 0g ` C ) e. B ) |
23 |
|
fveq2 |
|- ( ( N ` { X } ) = { ( 0g ` U ) } -> ( M ` ( N ` { X } ) ) = ( M ` { ( 0g ` U ) } ) ) |
24 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
25 |
1 2 3 24 6 20 9
|
mapd0 |
|- ( ph -> ( M ` { ( 0g ` U ) } ) = { ( 0g ` C ) } ) |
26 |
20 8
|
lspsn0 |
|- ( C e. LMod -> ( J ` { ( 0g ` C ) } ) = { ( 0g ` C ) } ) |
27 |
11 26
|
syl |
|- ( ph -> ( J ` { ( 0g ` C ) } ) = { ( 0g ` C ) } ) |
28 |
25 27
|
eqtr4d |
|- ( ph -> ( M ` { ( 0g ` U ) } ) = ( J ` { ( 0g ` C ) } ) ) |
29 |
23 28
|
sylan9eqr |
|- ( ( ph /\ ( N ` { X } ) = { ( 0g ` U ) } ) -> ( M ` ( N ` { X } ) ) = ( J ` { ( 0g ` C ) } ) ) |
30 |
|
sneq |
|- ( g = ( 0g ` C ) -> { g } = { ( 0g ` C ) } ) |
31 |
30
|
fveq2d |
|- ( g = ( 0g ` C ) -> ( J ` { g } ) = ( J ` { ( 0g ` C ) } ) ) |
32 |
31
|
rspceeqv |
|- ( ( ( 0g ` C ) e. B /\ ( M ` ( N ` { X } ) ) = ( J ` { ( 0g ` C ) } ) ) -> E. g e. B ( M ` ( N ` { X } ) ) = ( J ` { g } ) ) |
33 |
22 29 32
|
syl2anc |
|- ( ( ph /\ ( N ` { X } ) = { ( 0g ` U ) } ) -> E. g e. B ( M ` ( N ` { X } ) ) = ( J ` { g } ) ) |
34 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
35 |
4 5 24 13 34 10
|
lsator0sp |
|- ( ph -> ( ( N ` { X } ) e. ( LSAtoms ` U ) \/ ( N ` { X } ) = { ( 0g ` U ) } ) ) |
36 |
19 33 35
|
mpjaodan |
|- ( ph -> E. g e. B ( M ` ( N ` { X } ) ) = ( J ` { g } ) ) |