Step |
Hyp |
Ref |
Expression |
1 |
|
mapdspex.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdspex.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdspex.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdspex.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdspex.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
mapdspex.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
mapdspex.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
8 |
|
mapdspex.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
9 |
|
mapdspex.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
mapdspex.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
11 |
1 6 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝐶 ∈ LMod ) |
13 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( LSAtoms ‘ 𝐶 ) = ( LSAtoms ‘ 𝐶 ) |
15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
17 |
1 2 3 13 6 14 15 16
|
mapdat |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSAtoms ‘ 𝐶 ) ) |
18 |
7 8 14
|
islsati |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSAtoms ‘ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐵 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝑔 } ) ) |
19 |
12 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑔 ∈ 𝐵 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝑔 } ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
21 |
1 6 7 20 9
|
lcd0vcl |
⊢ ( 𝜑 → ( 0g ‘ 𝐶 ) ∈ 𝐵 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = { ( 0g ‘ 𝑈 ) } ) → ( 0g ‘ 𝐶 ) ∈ 𝐵 ) |
23 |
|
fveq2 |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) = { ( 0g ‘ 𝑈 ) } → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
25 |
1 2 3 24 6 20 9
|
mapd0 |
⊢ ( 𝜑 → ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝐶 ) } ) |
26 |
20 8
|
lspsn0 |
⊢ ( 𝐶 ∈ LMod → ( 𝐽 ‘ { ( 0g ‘ 𝐶 ) } ) = { ( 0g ‘ 𝐶 ) } ) |
27 |
11 26
|
syl |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( 0g ‘ 𝐶 ) } ) = { ( 0g ‘ 𝐶 ) } ) |
28 |
25 27
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) = ( 𝐽 ‘ { ( 0g ‘ 𝐶 ) } ) ) |
29 |
23 28
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = { ( 0g ‘ 𝑈 ) } ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { ( 0g ‘ 𝐶 ) } ) ) |
30 |
|
sneq |
⊢ ( 𝑔 = ( 0g ‘ 𝐶 ) → { 𝑔 } = { ( 0g ‘ 𝐶 ) } ) |
31 |
30
|
fveq2d |
⊢ ( 𝑔 = ( 0g ‘ 𝐶 ) → ( 𝐽 ‘ { 𝑔 } ) = ( 𝐽 ‘ { ( 0g ‘ 𝐶 ) } ) ) |
32 |
31
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝐶 ) ∈ 𝐵 ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { ( 0g ‘ 𝐶 ) } ) ) → ∃ 𝑔 ∈ 𝐵 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝑔 } ) ) |
33 |
22 29 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = { ( 0g ‘ 𝑈 ) } ) → ∃ 𝑔 ∈ 𝐵 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝑔 } ) ) |
34 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
35 |
4 5 24 13 34 10
|
lsator0sp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝑁 ‘ { 𝑋 } ) = { ( 0g ‘ 𝑈 ) } ) ) |
36 |
19 33 35
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐵 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝑔 } ) ) |