Metamath Proof Explorer
Description: Closure of the zero functional in the set of functionals with closed
kernels. (Contributed by NM, 15-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
lcdv0cl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
|
|
lcdv0cl.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
|
|
lcdv0cl.v |
⊢ 𝑉 = ( Base ‘ 𝐶 ) |
|
|
lcdv0cl.o |
⊢ 𝑂 = ( 0g ‘ 𝐶 ) |
|
|
lcdv0cl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
|
Assertion |
lcd0vcl |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdv0cl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcdv0cl.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcdv0cl.v |
⊢ 𝑉 = ( Base ‘ 𝐶 ) |
| 4 |
|
lcdv0cl.o |
⊢ 𝑂 = ( 0g ‘ 𝐶 ) |
| 5 |
|
lcdv0cl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
1 2 5
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 7 |
3 4
|
lmod0vcl |
⊢ ( 𝐶 ∈ LMod → 𝑂 ∈ 𝑉 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |