Metamath Proof Explorer


Theorem lcd0vcl

Description: Closure of the zero functional in the set of functionals with closed kernels. (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses lcdv0cl.h H=LHypK
lcdv0cl.c C=LCDualKW
lcdv0cl.v V=BaseC
lcdv0cl.o O=0C
lcdv0cl.k φKHLWH
Assertion lcd0vcl φOV

Proof

Step Hyp Ref Expression
1 lcdv0cl.h H=LHypK
2 lcdv0cl.c C=LCDualKW
3 lcdv0cl.v V=BaseC
4 lcdv0cl.o O=0C
5 lcdv0cl.k φKHLWH
6 1 2 5 lcdlmod φCLMod
7 3 4 lmod0vcl CLModOV
8 6 7 syl φOV