Metamath Proof Explorer


Theorem lcd0vcl

Description: Closure of the zero functional in the set of functionals with closed kernels. (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses lcdv0cl.h H = LHyp K
lcdv0cl.c C = LCDual K W
lcdv0cl.v V = Base C
lcdv0cl.o O = 0 C
lcdv0cl.k φ K HL W H
Assertion lcd0vcl φ O V

Proof

Step Hyp Ref Expression
1 lcdv0cl.h H = LHyp K
2 lcdv0cl.c C = LCDual K W
3 lcdv0cl.v V = Base C
4 lcdv0cl.o O = 0 C
5 lcdv0cl.k φ K HL W H
6 1 2 5 lcdlmod φ C LMod
7 3 4 lmod0vcl C LMod O V
8 6 7 syl φ O V